

Module Coursework Feedback

Module Title: Natural Language Processing

Module Code: MLMI13

Candidate Number: K5002

Coursework Number: 1

I confirm that this piece of work is my own unaided effort and adheres to the Department of

Engineering’s guidelines on plagiarism. √

Date Marked: Click here to enter a date. Marker's Name(s): Click here to enter text.

Marker's Comments:

This piece of work has been completed to the following standard (Please circle as appropriate):

 Distinction Pass Fail (C+ - marginal fail)

Overall assessment

(circle grade)
Outstanding A+ A A- B+ B C+ C Unsatisfactory

Guideline mark (%) 90-100 80-89 75-79 70-74 65-69 60-64 55-59 50-54 0-49

Penalties 10% of mark for each day, or part day, late (Sunday excluded).

The assignment grades are given for information only; results are provisional and are subject to

confirmation at the Final Examiners Meeting and by the Department of Engineering Degree Committee.

MPhil in Machine Learning and

Machine Intelligence 2022-2023

MLMI13 - Sentiment Analysis of Movie Reviews

K5002 - 1999 words

December 6, 2022

1 Introduction

Sentiment analysis is one of the most prominent topics within the field of natural language processing.
It aims to extract the emotion (sentiment) behind a body of text. In this paper we will investigate
multiple approaches to solving this task, such as lexicographical, ngram and SVM models. As well as
the utility of document embeddings provided by Doc2Vec, Bert and DistilBert.

2 0.1 Lexicon Based approach

One of the simplest approaches to sentiment analysis is through lexicons, first devised by Stone[10]
they consist of a dictionary of polarised words which are matched against a corpus of text to ob-
tain a document-level sentiment score. Wilson[12] dubs these scores as a “prior polarity” {positive

negative, both, neutral} since the words are not contextualised. Lexicons can be extended through
“reliability classes” denoting the strength {strongsubj, weaksubj}. This extension is constructed
from a corpus of contextualised polarity scores, indirectly considering context in the lexicon.

Solely using prior polarity lexicons achieves 63% accuracy over a corpus of news articles, and 65.7%
when using reliability classes. It was found that the news articles contain a bias towards being positive
accordingly a constant bias of -8 was used to compensate. A linear correlation between bias and the
number of tokens in a review was also found (Figure 1). With a -0.05946 compensation for each token,
and -6.9 bias (Figure 2).

Model Reference Reference constant bias constant bias linear bias linear bias
- [12] +Reliability [12] + Reliability + Reliability

Accuracy 63.0% 65.7% 0.57% 61.0% 67.3% 69.1%
F1 - - 0.7229 0.7547 0.8045 0.8169

Table 1: Lexicographical model performances compared to the reference implementation

Using the two-tailed sign test[11] the performance improvement achieved by adding reliability classes
is significant at the ρ = 4.676E − 5 < α = 5% level. Similarly adding the linear bias significantly
improves performance ρ = 1.714752E − 4 < α = 5%

Figure 1: Linear correlation between bias and the number of tokens verified via Spearman statistic
ρ = 0.4472

2

Sweighted(w1, w2, ..., wn) = −6.9 +

n∑
i=1

SLex[wi]− 0.05946 (1)

Figure 2: Lexicon using linear bias and magnitude (Reliability)

3 1.0 - Bag of words

Although lexicographical approaches are very simple and generalise well, their performance is limited
since they fail to model the structure of a specific domain. Naive Bayes is a probabilistic classifier
that builds a model for the likelihood of a class generating some input data (generative model) [5].
Providing a more analytical solution compared to lexicons.

ĉ = argmax
c∈C

P (c|d) = argmax
c∈C

P (d|c)P (c)

= argmax
c∈C

P (f1, f2, ..., fn|c)P (c) (representing document with features)

⇒ ĉNB = argmax
c∈C

P (c)
∏
f∈F

P (f |c) (naive Bayes assumption)

ĉNB = argmax
c∈C

logP (c)
∑
f∈F

logP (f |c) (naive Bayes assumption)

(2)

Where each fi is a word wi from a document d. To build this model we must extract P (c) and P (wi|c)
from our corpus, P (c) is simply the number of documents with that class divided by the total number
of documents.

P̂ (c) =
Nc

Ndoc
(3)

However P (wi|c) is more nuanced, we can crudely compute it in the same way as P̂ (c). (V is the
vocabulary of words in the training and test data)

P̂ (wi|c) =
count(wi, c)∑
w∈V count(w, c)

(4)

However there is no guarantee that count(wi, c) is non-zero, occurring when a word in the test corpus
of a given class does not appear in the training corpus. This causes the 50% accuracy seen in the
first model (equivalent to random guessing), since the majority of products

∏
f∈F P (f |c) become zero

thanks to a single zero P (f |c) .

This can be easily resolved with (Laplace) smoothing [5] by introducing a prior count, preventing 0
probabilities.

P̂ (wi|c) =
count(wi, c) + 1

|V |+
∑

w∈V count(w, c)
(5)

Implementing this results in a significant performance improvement, correctly classifying 78% of the
documents, on par with the reference implementation’s 78.7% (All results use 10-fold cross validation
to reduce type III errors). However we are also using an unnecessarily large vocabulary of words
where many have the same meaning thanks to the various possible conjugations of a given word.
By stemming words down to their root, removing morphological and inflexional endings [9] (such as
-ED, -ING, -ION, -IONS [4]) we can reduce the number of features from 53,555 to 32,404 however this
reduction in information does cost 0.8% accuracy although this difference is statistically insignificant.

3

Next we can relax the naive Bayes assumption to allow conditional dependency between n consecutive
words, allowing us to capture context between words such as negations. However this comes at a high
cost with the number of features being in the order of O(V n) (n=2 for bigrams, n=3 for trigrams). In
reality not all these permutations are present in the corpus, combined with stemming, the number of
bigrams is 500k and trigrams is 1.46M. Using a hash table this is tractable and significantly improves
performance w.r.t. bigrams (similarly to the reference [7]) and considerably improves performance
w.r.t. trigrams.

Model Unigram Uni + Bigram Uni+Bi+Trigram
Smoothed No Yes Yes Yes Yes
Stemmed No No Yes Yes Yes
Accuracy 50.1± 1.1% 78.0± 1.8% 77.2± 1.8% 82.5± 2.0% 84.2± 1.7%

F1 0.6680 0.8764 0.8716 0.9038 0.9142
Significant - Yes No Yes No
Features 52,555 52,555 32,404 500,086 1,462,605

Reference [7] - 78.7% - 80.6% -

Table 2: Cross validated BoW performance

4 SVM

The assumption of conditional independence that naive bayes makes, introduces skew in most real life
corpera. SVM’s sacrifice interpretability to forgo this assumption. They function via the following
mechanisms:

yi = w⊤xi + b (6)

yi(w
Txi + b) ≥ 1 i = 1, ...,m (7)

Where xi is a feature vector (words) and yi is a class label for a given document and w are the weights.
Basic SVM’s (Eqn 6) assume that that a corpus is linearly separable by w in RD (where D is the
dimensionality of the input vectors xi). Achieved by satisfying the constraint in equation 7. We can
turn this into a minimisation problem via the objective function in equation 8

min
w,b

1

2
|w|2 (8)

The constraint 7 and objective function 8 can be combined into the Lagrangian function 9 and it’s
maximisation 10:

L(w, b, α) =
1

2
|w|2 −

m∑
i=1

αi(yi(w
Txi + b)− 1) (9)

argmax
α

m∑
i=1

αi −
1

2

m∑
i,j=1

αiαjyiyj(xi · xj) (10)

4

Which has the solution 11:

w =
∑
i

αiyixi (11)

The Lagrangian multipliers αi are only non-zero for the support vectors, the data points that define
the decision boundary. Accordingly only those points closest to the decision boundary define αi and
consequently the solution to w. (Figure 3)

Figure 3: SVM Decision boundary and adjacent support vectors

SVM’s remove the requirement for linearly separable data by introducing basis functions ϕ(x) = x.
Which non-linearly transform the input data, they need only be continuously differentiable, e.g.

Polynomial - K(xi, xj) = (xi · xj)
d

Gaussian - K(xi, xj) = exp

(
− |xj−xj |

2
2

2σ2

)
σ ∈ R

hyperbolic tangent - K(xi, xj) = tanh(k(xj · xj) + Θ) k,Θ ∈ R

radial basis - K(xi, xj) = exp

(
− |xj−xj |

2

2s2

)
None of these kernels were found to significantly improve performance versus one another.

The final consideration when using SVM’s is the prepossessing and normalisation of the inputs xi, Pang-
et-al.[7] uses a count vectoriser which is normalised to length 1 (A V × 1 vector where the ith element
denotes the frequency of the word in the document). Taking inspiration from Das-Chakraborty[1] we
used TF-IDF as they report 7.01% greater accuracy versus the rerference implementation[7]. TF-IDF
combines the count vectoriser with a scaling which suppresses common words.

TF-IDF(t, d,D) = tf(t, d)× idf(t,D) =
fd(t)

max
w∈d

fd(w)
× ln

(
|D|

|{d ∈ D : t ∈ d}|

)
fd(t)− frequency of term in document d

d− document

D − corpus of documents

scoreT (si) =
∑
t∈si

TF-IDF(t, d,D)

(12)

5

Pant-et-al have also annotated each word with a part of speech tag. There are 36 unique tags which
represent local relationships between words for example “strongsubj/weaksub features are true if the
word and its parent share an adj, mod or vmod relationship”[12] (Figure 4). These features allow
linguistic modification rules to be encoded against each word in the corpus. Further they can be used
to restrict the feature space to only those words that contribute to the sentiment of a document. We
extracted nouns, adjectives, adverbs and Verb - base form NN, JJ,RB, V B[8]. Adding these POS tags
does not significantly improve performance and increases the number of features. However filtering on
these tags does not impact performance but almost halves the number of features.

Interestingly none of the SVM models developed in this chapter significantly improve upon the unigram
+bigram+trigram naive Bayes model, however, do achieve a 135 fold reduction in complexity. Accord-
ingly the SVM model is superior to the NB model, provided explainability is not required. Further as
expected all models surpass the reference implementation, thanks to the use of the TF-IDF vectoriser.

Figure 4: Pang-et-al[7] part of speech features

Model SVM SVM + POS SVM + POS + POS Filter Reference [7]
Kernel RBF RBF RBF Linear Poly Sigmoid RBF

Accuracy 86.9± 1.4% 87.3± 1.4% 87.4± 2.0% 87.4± 2.1% 85.4± 1.4% 86.5± 2.0% 82.9%
F1 0.9296 0.9319 0.9325 0.9322 0.9213 0.9273 -

Features 17684 20795 10514 10514 10514 10514 16165

Table 3: SVM performance - none of which provide a significant improvement vs the Uni+Bi+Trigram
NB model

5 Doc2Vec

To understand doc2vec we must first consider it’s origins, word2vec. Word2vec[6] aims to provide
a small embedded representation of a large vocabulary. Where multiple degrees of similarity are
maintained between word embeddings, for instance similar words will have a similar embedding, but
further than this, algebraic operations also hold: vector(“King”) - vector(“Man”) + vector(“Woman”)
≈ vector(“Queen”)[6]. This is achieved by either of two unsupervised models Continuous Bag of Words
(CBOW) and Continuous skip-gram (Skip-gram).

CBOW is trained by repeatedly sampling 2N+1 contiguous words. The N history and N future
(context) words are passed through a non-linear projection layer, and the outputs are summed forming
a D × 1 embedding. Then a hidden layer maps from the embedding to the target word. This forces
the projection layer to have a continuous distributed representation of the context [6].

6

The second model, skip gram, reverses CBOW, reconstructing context words given a single word. This
word is passed through the projection layer, then a single large hidden layer maps from the word
embedding to a vector encoding the C context words. Using a single layer allows for the representation
of word order.

Both models are then trained using stochastic gradient decent via backpropagation. CBOW is 3.6
faster to train but 17.2% less accurate [6].

Figure 5: Mikolov et al. [6]

Doc2Vec operates similarly but describes entire documents/paragraphs. It also has 2 models Paragraph
vector: distributed memory (PV-DM) which predicts multiple missing words, given a context vector
and paragraph ID, similar to CBOW. And distributed bag or words (PV-DBOW) which predicts many
context words from a document given a document ID, similar to skip gram.

In PV-DM each paragraph ID is passed through a non-linear paragraph-projection layer forming the
paragraph embedding vector D. Similarly each word is embedded forming word embeddings W . These
vectors are either averaged or concatenated together (we found concatenation performs best) then a
hidden layer projects from the embedding to the missing word(s). The addition of a paragraph vector
vs CBOW allows the semantics of words to be represented plus the ordering of words within the
paragraph. Consequently PV-DM generalises well despite it’s high dimensional representation.[3]

In PV-DBOW we only use the document embedding D, then predict a number of context words
sampled from the document. This model is far simpler and requires fewer parameters since the word-
projection layer parameters are not required.

Quoc Le & Mikolov[3] found the best results when PV-DM and PV-DBOW are combined. Similarly
when combining PV-DM and PV-DBOW by concatenating their embeddings, we obtained a significant
performance improvement of 4.8% achieving 88.1% accuracy!

7

Figure 6: Quoc Le & Mikolov [3]

In both cases the dataset of IMDB movie reviews was preprocessed by removing stop words and stem-
ming the vocabulary. Performance was measured by training an SVM to classify document sentiment
from the document embeddings, providing a measure for how much information was encoded within
the document embeddings. Hyper-parameter tuning follows exploration-exploitation theory varying
a single parameter at a time then exploiting the best parameter. Training took approximately 40
minutes for each hyper-parameter setting running on a 16 core machine, accordingly only 14 models
were fully trained and K-fold cross validation was not viable (Table 4).

Epochs Model Alpha vector size window size F1 Accuracy
50 PV PM 0.025 100 30 0.7699 62.5%
50 PV PM 0.025 100 5 0.8289 70.8%
100 PV DBOW 0.01 300 30 0.8328 74.2%
100 PV DBOW 0.005 300 30 0.8861 80.1%
50 PV DBOW 0.0025 300 30 0.9032 82.2%
50 PV DBOW 0.001 300 30 0.8346 71.6%
50 PV DBOW 0.0025 300 5 0.8495 73.8%
50 PV DBOW 0.0025 50[3] 30 0.8710 77.2%
50 PV DBOW 0.0025 100 30 0.8888 80.0%
50 PV DBOW 0.0025 300 15 0.8933 80.7%
50 PV DBOW 0.0025 300 60 0.9027 82.3%
500 PV DBOW 0.0025 300 20 0.9069 83.0%
300 PV DBOW 0.0025 300 30 0.9144 83.3%
50 BOTH 0.0025 300/50 30/5 0.9370 88.1%

Table 4: Doc2Vec performance

Where the vector size is the size of the document embeddings D and word embeddings W , the window
size is the maximum distance between words in the context vector and alpha is the learning rate. The
learning rate was cooled down linearly during training to α/10, ideally a more reactive learning rate
would be used based on the current losses first and second moments as well as using momentum, such as
the Adam optimiser. Unfortunately the training loss is not stored in Gensim’s doc2vec implementation
preventing the use of an optimiser.

Overall only by combining both Doc2Vec models did we achieve a significant performance improvement
compared to the naive Bayes Unigram+Bigram+Trigram model, being 88.1% accurate compared to
the 84.2% achieved by naive Bayes.

BERT[2] is a transformer architecture using an attention mechanism intended to understand language,
it’s trained via a combination of Masked LM (predicting missing words in sentences) and NSP (Next

8

Sentence Prediction). The trained model produces an embedding that captures the meaning of a
sentence and so transfer’s well between a variety of tasks. We used a pre-trained model[2] trained on
3.3 billion words to produce document embeddings for each review, before using an SVM to classify
the embedding’s sentiment. We also used a newer variant of BERT, DistilBert which simplifies the
architecture and executing ∼2x faster. We used a pre-trained version trained on 11,038 books and 2.5
billion words from Wikipedia.

Model Training Time F1 Accuracy
BERT 11:56 0.8400 72.4

DistilBert 6:21 0.8465 73.38

Table 5: BERT & DistilBert + SVM performance - time in minutes, embedding size=768

Overall both architectures perform significantly worse than our Doc2Vec implementation, we believe
this is due to using an SVM to classify the embeddings. Had a multi-layer neural network been used
more information could have been extracted from the embedded representation.

5.1 Embedded representations

Theoretically the document embeddings produced by Doc2Vec should be similar for similar reviews.
To test this analytically we have computed the cosine similarity between the Doc2Vec embeddings of
all the possible combinations of 1,000 reviews. For reference we have also done so for the TF-IDF
representation as well as BERT and DistilBERT embeddings.

A The acting was bad, script was bad and ending was just terrible...the only good comment
i could make about this movie would be the special effects and make up...but

apart from that...this movie would be one of the worst movies of 2001...
why on earth did they have to remake such a perfect movie and ruin it...why!!!!

B This movie changes its way a third of the way in.its totally pointless boring and stupid.
i hated this movie so much that i will never watch it again.some bad films can be really
funny. this is just a British art house picture that should never of been made.1 out of 10
D2V TF-IDF BERT DistilBERT

Cosine Similarity 0.9621 0.1005 0.7774 0.9819

Table 6: Two similar reviews according to Doc2Vec, both are negative

A No offense to anyone who saw this and liked it, but I hated it!
It dragged on and on and there was not a very good plot, also,

too simple and the acting was so so... I would give this snorefest a 2 at the most
B I love this movie. I mean the story may not be the best, but the dancing most

certainly makes up for it. You get to know a little bit about each character the
way THEY want you to learn about them. I just think that you won’t like this

movie unless you’re into Broadway..
D2V TF-IDF BERT DistilBERT

Cosine Similarity 0.9550 0.0569 0.9396 0.9468

Table 7: Two similar reviews according to Doc2Vec, A is negative, B is positive

In Table6 review A talks about acting, scripts, endings and special effects while review B indirectly talks

9

about the plot, doubts it’s humour and complains about the studio house. Despite the lack of topic
overlap the Doc2Vec embedding is almost identical. However, we can see that the Doc2Vec embedding
is reasonable as both BERT and DistilBERT also have similar embeddings. The same holds to an
even greater extent in Table7 given the reviews even have opposing sentiment. Accordingly Doc2Vec
embeddings are not close in space to their most critical words exclusively, this can be verified by the
large difference in TF-IDF scores (as this indicates the overlap of vocabulary of the two reviews).
Further we can show that similar embeddings are almost never spatially close to one another via
Table8:

D2V TF-IDF BERT DistilBERT
0.9621 0.1005 0.7774 0.9819
0.9550 0.0569 0.9396 0.9468
0.9509 0.0634 0.8903 0.9774
0.9496 0.0427 0.9581 0.9918
0.9494 0.0754 0.9608 0.9403
0.9489 0.1181 0.9432 0.9959
0.9479 0.0450 0.9478 0.9427
0.9472 0.0645 -0.2965 0.8581
0.9471 0.0438 0.9763 0.9827
0.9466 0.1337 0.8022 0.9384
0.9466 0.4879 0.9695 0.9035

Table 8: Summary of top 10 cosine similarity scores

Table 8 shows that there is good consensus between embedding schemes with the exception of TF-IDF.
This is significant as TF-IDF encodes the word counts in a review, therefore the embeddings are not
close in space according to the most critical words or even any words for that matter.

6 Conclusion

Overall Doc2Vec provided the most significant results, correctly classifying 88.1% of the test examples.
Naive Bayes provide the best results compared to their implementation’s complexity but uses an
extortionate number of features. SVM provides the most compact representation using just 10,514
features to obtain near leading performance. The BERT based architectures were the most surprising,
given the large number of parameters better results would be expected, however the implementation
could be better optimised for these architectures in future research.

Model F1 Accuracy
Lexicon 0.8169 69.1%
BERT 0.8400 72.4%

DistilBert 0.8465 73.38%
Uni+Bi+Trigram 0.9142 84.2%

SVM 0.9319 87.4%
Doc2Vec 0.9370 88.1%

Table 9: Model performances

10

References
[1] Bijoyan Das and Sarit Chakraborty. An Improved Text Sentiment Classification Model Using

TF-IDF and Next Word Negation. 2018. doi: 10.48550/ARXIV.1806.06407. url: https:
//arxiv.org/abs/1806.06407.

[2] Jacob Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Under-
standing. 2018. doi: 10.48550/ARXIV.1810.04805. url: https://arxiv.org/abs/1810.04805.

[3] Quoc V. Le and Tomas Mikolov. Distributed Representations of Sentences and Documents. 2014.
doi: 10.48550/ARXIV.1405.4053. url: https://arxiv.org/abs/1405.4053.

[4] M.F.Porter. An algorithm for suffix stripping. https://tartarus.org/martin/PorterStemmer/
def.txt. (Accessed on 12/04/2022). July 1980.

[5] Daniel Jurafsky & James H. Martin. Speech and Language Processing. https://web.stanford.
edu/~jurafsky/slp3/. (Accessed on 12/04/2022).

[6] Tomas Mikolov et al. Efficient Estimation of Word Representations in Vector Space. 2013. doi:
10.48550/ARXIV.1301.3781. url: https://arxiv.org/abs/1301.3781.

[7] Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. “Thumbs up? Sentiment Classification us-
ing Machine Learning Techniques”. In: Proceedings of the 2002 Conference on Empirical Methods
in Natural Language Processing (EMNLP 2002). Association for Computational Linguistics, July
2002, pp. 79–86. doi: 10.3115/1118693.1118704. url: https://aclanthology.org/W02-1011.

[8] Penn part-of-speech tags. https://cs.nyu.edu/~grishman/jet/guide/PennPOS.html. (Ac-
cessed on 12/04/2022).

[9] Martin Porter. Porter Stemming Algorithm. https://tartarus.org/martin/PorterStemmer/.
(Accessed on 12/04/2022). Jan. 2006.

[10] Philip J. Stone et al. The General Inquirer: A Computer Approach to Content Analysis. Cam-
bridge, MA: MIT Press, 1966.

[11] Larry E. Toothaker. “Book Review : Nonparametric Statistics for the Behavioral Sciences (Sec-
ond Edition): Sidney Siegel and N. John Castellan, Jr. New York: McGraw-Hill, 1988, 399
pp., approx. $47.95”. In: Applied Psychological Measurement 13.2 (1989), pp. 217–219. doi:
10.1177/014662168901300212. eprint: https://doi.org/10.1177/014662168901300212.
url: https://doi.org/10.1177/014662168901300212.

[12] Theresa Wilson, Janyce Wiebe, and Paul Hoffmann. “Recognizing Contextual Polarity in Phrase-
Level Sentiment Analysis”. In: Proceedings of Human Language Technology Conference and Con-
ference on Empirical Methods in Natural Language Processing. Vancouver, British Columbia,
Canada: Association for Computational Linguistics, Oct. 2005, pp. 347–354. url: https://
aclanthology.org/H05-1044.

11

