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Abstract

Argumentation Mining (AM) enables us to reason with natural language; effective AM

depends on our ability to accurately detect claims in text. In structured texts, the claim

detection performance of the state of the art model, ’BERT’, is well understood. But much

less is understood when BERT is applied to less structured text, such as social media, which is

more indicative of “real world natural language”.

We compare BERT’s performance in classical structured texts with that of semi-structured

texts. Then study the performance improvements obtained by pre-training BERT in the same

domain before training BERT for claim detection.

Overall, we have found that BERT performs well on semi-structured text, but pre-training in

the domain is not necessary to obtain good performance. This work can be continued through

the use of classical argumentation mechanisms to relate claims to one another for effective

argumentation mining from social media.
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Chapter 1

Introduction

Claim detection entails the identification of arguable statements in text, and so is the natural

first step in any study of arguments. As such, it is vital to understand how our ability to

accurately identify claims varies between each domain in which we might apply the technology.

Current techniques and their capabilities are well understood for classical argumentative text,

such as debate forums containing structured text. But much less is understood when the tech-

nology is applied to less structured text, such as social media. A complete understanding of

claim detection in semi-structured text will allow for far more effective and useful argumenta-

tion mining. Argumentation mining gathers evidence supporting/attacking claims ergo, adding

structure, enabling inference and allowing us to reason with natural language.

This report investigates the capabilities of BERT to detect claims in “real-world natural

language”, such as social media where the language used is much more chaotic than anything

seen in formal debates. In social media vague claims are frequently made; this makes the task

of identifying whether a social media post makes a claim very challenging. So far most research

avoids this problem by solely applying their models to structured text such as debate forums.

Such debate forums host a very small community of users (106 total Kialo posts) compared

to social media (1011 tweets annually). As such, debate forums naturally lack social media’s

community, subject, linguistic and emotional diversity.

Current state of the art methods fine-tune a pre-trained BERT model to identify claims.

BERT is a transformer model that targets language understanding, whose training consists of

2 parts:

1. unsupervised pre-training combining Masked LM (predicting missing words in sentences)

and NSP (Next Sentence Prediction)
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2. supervised fine-tuning for an arbitrary decoding task

The pre-training step embeds the model with an understanding of the language and vocabulary

of the domain, but as such assumes that the application domain is the same as the pre-training

domain. Existing methods avoid pre-training BERT in the application domain, thus when

applied to social media data, any vocabulary not seen during pre-training, such as ’singlish’

and emoticons is removed during pre-possessing; these models are also embedded with less

understanding of the language used on social media.

We investigate whether pre-training BERT in the application domain can increase perfor-

mance on both classical and real-world datasets, posing novel techniques to encode features

unique to social media datasets, such as emoticons and hashtags. This work can then be con-

tinued through the use of classical argumentation mechanisms to relate claims to one another

for effective argumentation mining from social media.

1.1 Motivation

Argumentation mining is still in its infancy, having only began to grow in popularity in 2014

(figure 1.1), but has amazing potential to help us make sense of the vast amount of natural

language uploaded to internet platforms every day. Later tasks in argumentation mining such

as relation identification and stance detection depend on accurate claim detection. As such, it

is vital to perform this task as best as possible to aid all development in the field. We hope

to help lay the foundation to allow argumentation mining to be applied to a broader variety of

applications, encouraging later research to investigate it’s utility to reason with the web.

The ability to apply argumentation mining to a variety of applications will only grow in

importance as we focus more on XAI (explainable AI) in the face of upcoming EU regulations

[1] [2] [3].

Figure 1.1: Argumentation Mining and Claim Detection usage over
time
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1.2 Structure

This report is divided into several chapters, and a comprehensive study of the field of argumen-

tation mining is conducted in the background (Chapter 2). The research most relevant to this

report is reviewed in more detail in section 2.6.3, we recommend that advanced readers skip

to this section. The goals and requirements are then detailed in the specification (Chapter 3),

while the design (Chapter 4) details how these requirements will be met. The implementation

(Chapter 5) covers the details of developing the designed algorithms with python. Finally, we

publish our results in chapter 6 and reflect on the report in the evaluation in chapter 7.
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Chapter 2

Background & Review

In the following, we will begin our exploration into the history of argumentation mining, var-

ious associated methods and their benefits and drawbacks. The key reading relevant to the

investigation can be found in section 2.6. The full history of the research in the field has also

been detailed in [4], and was used to guide much of the research in the following sections.

2.1 Argumentation Mining

Argumentation mining is the art of identifying components of language and relating them to

support or attack one another. With the goal of using the resultant structure to reason more

effectively with natural language. Over time, a vast amount of research has been conducted

towards integrating argumentation theory into intelligent systems. The field has grown from

pure logic, to deductive reasoning, defeasible reasoning, opinion mining and today argumenta-

tion mining. Argumentation mining most easily applies to debates, thanks to the exchange of

well-formed arguments, leaving little uncertainty as to whether one statement attacks or sup-

ports another statement, or is simply unrelated. To aid in the understanding of the following

sections, here are some sample sentences extracted from the dataset used by [5]:

1. We also could save endangered species, even revive extinct ones

2. Cloning, they claim, is a better technology for harvesting stem cells because it could

mitigate problems of tissue rejection, since stem cells are cloned from the patient’s own

body.

3. Reproductive cloning would entail dehumanizing experimentation “Just Say No To Human

Cloning”
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4. We Should Raise the Minimum Wage

5. Some make common sense arguments while others use enough fancy math to dazzle any

economist

The first 4 sentences each make claims, the first and second support cloning, while the third

attacks cloning. The fourth is an unrelated claim. While the fifth makes no claim at all. These

relations can be used to form a graph, where each node is a claim, and each edge relates 2

claims in a for relation (+ green) or against relation (- red).

Figure 2.1: Argumentation Graph

Now that we have established what argumentation mining is, in the following sections we

will discuss the history of the field, its origin, and current state. Although this report only goes

as far as to study claim detection in greater detail, it is important to understand the general

state of the subject. Never the less, feel free to skip to section 2.6 for the research that is most

relevant to this report.

2.2 Deductive Reasoning

Deductive reasoning, also called deductive logic, is the purest form of reasoning which draws

conclusions from a set of premises using logical rules. For example, applying the logical rule

modus ponus to a pair of symbols P and Q: P → Q denotes that Q can be concluded from P .

It is upon deductive reasoning on which logic is based, but it is limited in that it only deals

with absolutes, accordingly, defeasible reasoning was developed...

2.3 Defeasible Reasoning

Defeasible reasoning studies the case where arguments supporting a claim are ’tentative’, mean-

ing that although the argument supports/attacks the claim, it’s basis is not deductively valid
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(if all premises are true, the conclusion is also true). In short, arguments can be invalidated by

additional information, for example [6]:

• Claim: “The sign is red”

• Tentative Argument: “The sign looks red”

• Overriding Argument: “The sign is being illuminated by red lights, but is in fact white”

Pollok [6] provided the theory for reasoning with such arguments which had, up until that

point, been overlooked in the literature. Hence, the theory for both defeasible and deductive

reasoning was laid out for future research.

This foundation sparked a frenzy of implementation with Dung [7] first to implement Pol-

lock’s [6] theory with logical programming. Next, Krause [8] published another implementation

but started to address the uncertainty in such reasoning, which was named justification. For

example [8]:

• arg1: A (0.8)

• arg2: B(0.8)

• arg3: C(0.8)

• r1 : A&B ⊃ D(1.0)

• r2 : A&C ⊃ D(1.0)

• p(D) = p(A ∧ B ∧ r1) ∨ p(A ∧ C ∧ r2)

= p(A ∧ B ∧ r1) + p(A ∧ C ∧ r2) − p(A ∧ B ∧ r1 ∧ C ∧ r2)

= 0.64 + 0.64 − 0.512 = 0.768

In the above we have a series of arguments, each with an uncertainty, and a pair of rules that are

definite; finally we calculate the uncertainty in D after applying these rules to the arguments,

which evaluates to 0.768. (Note, the original paper has a typographical error which has been

corrected here). Pollock then fulfilled the promise in their original paper to follow up the theory

with an implementation [9] which similarly explored justification. [10] extended the ability to

negotiate using argumentation into the field of multiagent systems, which was concluded on

the millennia by [11] with agents able to maintain natural debates, arguing over a topic.
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2.4 Toulmin’s Model

Future progress towards argumentation mining largely depends on the formalisms established

by Toulmin’s model [12]. Toulmin’s model breaks down the anatomy of arguments, as such,

also finds widespread adoption in the structuring of persuasive writing. It describes the layout

of arguments to comprise of 6 key components:

• claim - pure argument whose merit must be established

• grounds - evidence to justify claim

• warrant - connects grounds to claims

• backing - adds credibility to warrant

• qualifier - “indicate the strength conferred by the warrant on this step”

• rebuttal - “circumstances in which the general authority of the warrant would have to

be set aside”.

Figure 2.2: Toulmin’s Model

Implementing Toulmin’s model in reality presents a yet unsolved problem, due to the com-

plexity of interpreting natural language. Instead, the problem has been decomposed into 3 key

components.

• Claim Detection - Does a given sentence make a claim

• Relation Identification - Does a given sentence relate to a claim (give grounds to the

claim)

• Stance Detection - Identifies the nature of the relationship between a claim and its

grounds, whether it supports or attacks

Each will be addressed later. However, each first depends on the research that was developed

for the field of opinion mining...

10



2.5 Opinion Mining

The next logical step toward argumentation mining is opinion mining (sentiment analysis),

which simply analyses the sentiment of text. This is a great simplification vs argumentation

mining as the structure of the text does not need to be considered. There are two schools

of thought: Lexicographic and Machine Learning (ML). Lexicographic approaches were

the first to be developed [13]. They function by constructing a dictionary of positive and

negative words (“lexicons”), the overall sentiment is then the sum of the respective scores of

the component words. For instance, Twitter themselves suggest [14] a positive lexicon of “happy,

exciting, excited , favorite, fav, amazing, lovely, incredible” and negative lexicon of “horrible,

worst, sucks, bad, disappointing” to retrieve emotional tweets (although it is reasonable to

assume they use more advanced techniques internally). Lexicons can be extended to account

for negation and intensification and the like. The most notable lexicons are AFINN [15],

(AFINN applied to twitter: [16]), VADER [16] and NRC [17]. It is worth noting that Opinion

Mining has long been applied to social media with both NRC and VADER having 20k and

4.2k tweets included in their training corpus, respectively. Generally, VADER performs the

best, closely followed by AFINN according to benchmarks [18]. NRC also provides granular

emotional scoring over a set of emotions: anger, anticipation, disgust, fear, joy, sadness, surprise,

and trust, although unsurprisingly performs worse at this harder task with an F1 score of 0.42

compared to AFINN and VADER with 0.84F1 on Twitter datasets [18]. Lexicons have also

been developed for social media to assess specific topics such as [19] which uses lexicons to

assess student learning experiences through student’s posts to Twitter.

ML approaches cover a more diverse range of natural language models. This unlocks far

superior accuracy compared to the lexicographic approach. Today, opinion mining is a largely

solved problem for both structured and semi-structured text, thanks to ML models such as

XLNet achieving over 95% accuracy on structured datasets [20, 21] and unstructured datasets

such as SST [21] and IMDb [22]. A brief summary of the current state of the art has been

detailed in section 2.5.

2.5.1 Opinion Mining with Emojis

One of the many contributors to the discrepancy between traditional argumentation datasets

and Twitter is the frequency of emoticons within text. Emoticons are icons that can be included

in text, many of which are facial expressions, but, overall, they are used to convey emotion.

This has attracted lots of interest within the field of sentiment analysis as emoticons have been
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Dataset Binary Accuracy Model
or Fine

IMDb [20] B 96.21 % XLNet (Autoregressive Pre-trained BERT) [23]
IMDb [20] B 95.79 % BERT (Transformer) [24]
SST [21] B 96.8 % XLNet (Autoregressive Pre-trained BERT) [23]
SST [21] F 56.2 % BCN+BiLSTM+CoVe [25]
SemEval [26] F 0.685 (F1) LSTMs+CNNs ensemble [27]
SemEval [26] F 0.677 (F1) Deep Bi-LSTM+attention [28]

Table 2.1: Opinion Mining Performance

shown to contribute to sentiment classification, also showing promise when used in clustering

algorithms [29] and so clearly contain useful information. Most recently, [30] formally assessed

emoji’s contribution when using state-of-the-art models, and found that “Emoji information is

useful in sentiment analysis”. The largest investigation to date was conducted by MiT, dubbed

“DeepMoji” [31] which trained a bidirectional LSTM with attention on a corpus of 1.2 billion

tweets, seeing performance up to F1=0.75 when transferred to sarcasm datasets. For more

information, a review of the field has been conducted [32].

Thus far, there has been very little integration of emoji’s within the field of argumentation.

Furthermore, many previous researchers have restricted themselves to claim, ground & warrant

component identification, citing shorter text as jargon to be of limited use when constructing

arguments. If we applied this philosophy to Twitter, a lot of Twitter data would be discarded

as most tweets are just a few words long (21% of the tweets gathered contained 5 words or less),

further non-argumentative and thus unsupported tweets (unsupported claims have no premise,

so are called enthymemes) would also be discarded. To avoid this, we could follow Toulmin’s

rubric more closely, by treating emoticons, jargon and otherwise non-argumentative tweets as

simple backing [12] w.r.t. their local neighbours (parent tweets and popular replies). Especially

given that a large proportion of tweets contain emoticons (23% of the tweets we mined contained

emojis). It would be an interesting candidate for future research on argumentation mining with

social media.

A further complication of using emoji’s to aid opinion mining and later argumentation

mining, are sequence modifiers [33]. Whereby multiple emoji-reserved Unicode characters can

be strung together in specific combinations to form new emojis, such as

+ + =
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2.6 Claim Detection

Returning to Toulmin’s model we can now focus on the first component of argumentation min-

ing, claim detection. Claim detection entails the identification of arguable statements in text.

The definition in the Cambridge dictionary encapsulates this as “a statement that something is

true or is a fact, although other people might not believe i” [34]. The identification of argumen-

tative claims comes naturally to humans as claims are frequently made during conversations

and other discourse, but this task presents a real challenge for machines, due to the lack of a

formal definition of when a sentence becomes a claim, instead we must base our classification

purely on the empirical definition cited previously [34].

Many classical approaches to the problem utilise discourse markers, which are lexical fea-

tures that are used to relate segments of discourse. [35] gives a good definition of discourse

markers, identifying 2 key uses. Firstly, to entail a claim, the example they use: “However,

staying down is pointless from a pedagogic point of view.”, where However is the discourse

marker denoting the beginning of a claim. Secondly, to mark elaboration: “the students get

frustrated, their performance generally does not improve. Also, the point of repeating all courses

because of only one or two bad grades is arguable” here Also follows the claim and precedes

further elaboration on the claim. Discourse markers have seen widespread use in the field in

both supervised [36, 37, 38] and unsupervised approaches [39, 40, 41] as they consistently

improve performance due to their ability to help narrow down possible locations of claims.

However, it is worth noting that such indicators are sparsely found in semi-structured text.

2.6.1 unsupervised claim detection

The current state of the art method for the unsupervised detection of claims is a joint model [39]

which combines the techniques in [40] and [41]. It has 3 components:

1. position model

2. indicator model

3. text rank model

The position model scores sentences based on their position in each paragraph. Sentences

at the beginning/end of the first/last paragraph are granted the highest score, sentences at the

beginning/end of others are given a lower score, otherwise no score is added.
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scorep(si) =


2 si first/last sentence in paragraph in the first/last paragraph

1 si first/last sentence in OTHER paragraphs

0 else

si - ith sentence in the document

The indicator model increases the score for any sentences that contain discourse markers.

It is formally defined as:

scoreI(si) =


1 si contains discourse marker in the list L

0 otherwise

(2.1)

Where L is a list of 82 discourse markers: accordingly, as a result, consequently, conclude that,

clearly, demonstrates that, entails, follows that, hence...

The text rank model scores each sentence based on the frequency with which its words

appear in the rest of the document. The implementation used is based on [41]. This boils

down to a TF-IDF (term frequency inverse document frequency) score, which simply scores

each term in a sentence based on the inverse of its frequency in the document, hence common

words are given lower scores so are less likely to be included in the claim lexicon. The TF-IDF

score is defined as:

TF-IDF(t, d, D) = tf(t, d) × idf(t, D) = fd(t)
max
w∈d

fd(w) × ln
(

|D|
|{d ∈ D : t ∈ d}|

)

fd(t) − frequency of term in document d

d − document

D − corpus of documents

scoreT (si) =
∑
t∈si

TF-IDF(t, d, D)

(2.2)

These 3 metrics are then combined to form the joint model, which scores each sentence in
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the corpus, with higher scores indicating a higher chance that the sentence makes a claim:

score(si) = α · scoreT (si) + scoreT (si) · [β · scoreP (si) + (1 − α − β) · scoreI(si)]

Where α and β are parameters that must be tuned depending on the genre.

The above model achieves an F1-score of 0.56 on a classical dataset consisting of persuasive

essays and web discourse. This is very admirable considering that the method does not require

topic information, which is required by most other methods [40, 42, 5]. However, overall this

method is fairly crude, as it does not attempt to understand the text, it merely uses features

that are shown to have strong statistical correlation with claims in structured text. As such,

this model applies poorly to unstructured text. For which both the positional score and text

rank score mean very little. This lack of structure is supported by [43], who attempted to

fit an argumentation model to Twitter, but “we (almost) never find such a kind of complete

structure of the arguments”.

2.6.2 Semi-supervised claim detection

A novel approach to semi-supervised claim detection was proposed in [44]. They developed

a topic independent claim related lexicon (TICRLex) by constructing lexicons (a set of terms)

found in claims in tweets about a given topic. They combine the best terms from each topic to

form the TICRLex. In brief, the terms for the lexicon were selected based on:

ClaimT I(t) =
∑
k∈K

IGk(C, t) · H(t|K)
TNk

Where IGk(C, t) is the information gain about a claim C of term t given a topic k, H(t|K) is

the distribution of t under a set of topics K, the more evenly distributed a term is across the

topics the greater H. And finally, TNk is the number of tweets on a topic k.

Next, they filter these topic-independent lexicons for each topic based on how positively each

term relates to its claim, those with the strongest relations to claims under a given category

form the Topic-Dependent Claim-Oriented Lexicon (TDCOLex)

ClaimT D(t) =
∑

wi∈posLex

ClaimT I(wi)+ · CoT (wi, t)
TNt

Where CoT (wi, t) is the co-occurrence frequency of a term t in a topic-related tweet set

TS with the term wi in poslex (poslex is a pre-trained lexicon of positive terms). TNt is
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the number of tweets containing term t and finally ClaimT D(t) is a term t’s topic-dependent

claim-oriented score (how positively a term relates to the claims of this topic).

2.6.3 Supervised claim detection

For broader applications, supervised models have had much greater success. Such models have

followed the progression of the field of deep learning, starting initially with linear regression

models, such as that used in [43], which performed admirably and achieved an F1-score of

0.56. They also continued their research into relation identification with limited success (F1-

score 0.18). Their findings are extremely applicable to this report, unfortunately they lack

useful detail regarding their implementation beyond them finding a logistic regression model

to perform the best using 3 fold cross-validation to validate their findings. They also used the

DART [45] data set throughout their investigation; unfortunately, this data set is not publicly

available. [43] served as the first demonstration that tweets could be reliably mined using

supervised models for claim detection tasks.

A very similar investigation was conducted in [46], again identifying claims in Twitter us-

ing a linear regression model. They report an overall F1-score of 0.78, although under further

investigation a very biased dataset was used, a subset of the DART [45] dataset with 1459 argu-

mentative tweets but only 428 non-argumentative tweets, further they also reported the micro

F1-scores for argumentative and non-argumentative tweets, being 0.85 and 0.52 respectively.

The realistic performance on a balanced dataset would be much closer to 0.52, as such little

attention has been paid to their findings since [43] outperforms their model.

More recent research has started to focus on deep models, for which there are 2 state of the

art approaches. The first approach is to fine tune Google’s BERT [47] model, this approach

was taken in [5]. They simply downloaded Google’s pre-trained BERT model and fine tuned

it (continuing training on a new dataset, starting from the same weights). They trained the

model on both the UKP dataset (25492 labelled sentences on controversial topics taken from

[48]) and IBM debater Evidence Sentences dataset (labelled Wikipedia text on 118 topics from

various debate portals [49]). After training, they achieved an average performance of F1=0.71,

which is a remarkable improvement compared to prior supervised methods. However, both

training datasets consist of well-structured text, where as the majority of supervised methods

mentioned previously operate on semi-structured data such as tweets, for this reason the great

performance must be taken with some scepticism. In [5] they also researched how unsupervised

clustering of tweets using BERT embeddings (the latent space representation of a sample) could
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be used to aid claim detection performance, but it proved to be detrimental (F1=0.65).

The second state of the art approach uses Graph Neural Networks to detect claims and was

investigated in [50]. Graph Neural Networks are rapidly growing in popularity and were applied

here to the same datasets as BERT was applied to in [5]. As well as 2 additional smaller datasets

extending the model to better differentiate between claims and premises. Various kernels were

tested, but overall the best performing kernel achieved just F1=0.61 on the UKP corpus. Little

investigation is taken in their paper comparing their results to other papers, it is likely that the

reason for this lower score is their lack of embedded understanding of natural language in their

model when compared to BERT. As the pre-training phase of BERT embeds an understanding

of natural language into the BERT model through exposing the model to 3.3 billion exemplar

sentences.

BERT for Claim Detection

Before continuing to the next component of argumentation mining (stance detection, section

2.7), is worth reviewing [5] in more detail. We will then examine the BERT architecture they

have used in greater detail, as it is the best architecture to date for claim detection.

[5] fine tunes BERT on 2 structured text datasets to detect claims. The first of which was

created by the UKP (Ubiquitous Knowledge Processing) lab, the second as part of IBM’s Project

Debater. Each dataset contains a list of sentences which have been manually annotated as either

making a claim or not, in the case of the UKP dataset sentences are also labelled as for/against

claims giving 3 labels, although for the majority of the report these are binarized into claim/no

claim. In the case of the IBM dataset each sentence was scored according the strength of the

evidence it provided towards a claim, these were then re-processed by [5] into binary labels

denoting the presence of a claim, unfortunately their labelled dataset was not published so we’ll

only be considering the UKP dataset from now on. Next they tokenized each sentence using

the BERT Tokenizer from [47], this is a word piece tokenizer that extracts subwords from each

word to minimise it’s vocabulary. This has two effects. First, uncommon conjugations of words

will be split into their root and suffix, with a string of ## denoting the beginning of a suffix.

This allows for the meaning of words to be maintained across conjugations. The 2nd effect of

this is enabling the recognition of unrecognised words to an extent, for example arachnophobia

is not present in BERT’s default vocabulary of 30k words, so it is split into ’ara’, ’##ch’,

’##no’, ’##phobia’ which can then be input to the model, this is not ideal as it assumes the

model is able to extract the meaning of the word from the sum of it’s sub words, but is far
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better than the alternative of replacing unknown words with a unknown token such as [UNK].

A pre-trained model is then loaded from the repository for [47], this model has been trained

on 3.3 billion words from Wikipedia (an online encyclopaedia indexing structured descriptions

of terms). The implication of this is that the model has been conditioned to understand the

language on Wikipedia and has a vocabulary consisting of the most common words on the site.

This is ideal for the training data used in the paper as the UKP dataset consists of “news

reports, editorials, blogs, debate forums, and encyclopedia articles” [48] which are all similar in

nature to the language used in Wikipedia articles. However this highlights the key issue when

applying BERT to other datasets, the pre-training domain must be the same as the domain in

which the model is applied. Thanks to this, the work in [5] cannot simply be transferred to a

new domain such as Twitter without the model having been pre-trained in the Twitter domain.

Thanks to this, our implementation addresses this issue in section 4.6.

Before training can begin, the model is modified to add a classification layer; this adapts the

768 element output vector of the BERT model to the classification labels, in this case 2 outputs

are used denoting claim/no claim. In the paper they choose 2 outputs over a binary output as it

allows for the use of cross entropy loss, which can be scaled to an arbitrary n-class classification

problem, allowing the model to be trained in the 3 class case (no claim/for claim/against claim).

However, the paper falls short as it uses a python package called BertForSequenceClassification

to automatically add this layer, however it doesn’t add a SoftMax activation before the output.

The Softmax activation function applies the function ez∑
ez

to normalise the output to follow a

probability distribution that sums to 1. The use of SoftMax is widely accepted for classification

problems [51] [52] and is used in our implementation (section 4.5.4).

Training the pre-trained model is called fine-tuning, as much of the model will remain

relatively unchanged especially in earlier layers. Since the vocabulary and input encoding

remain the same as it was during pre-training, only the classification problem has changed.

As such the understanding of natural language embedded in the model during the pre-training

phase (which we’ll delve into in more detail later, section 2.6.3) can be used for the new problem.

BERT Architecture

BERT is the model of choice, both in our investigation and in the paper that inspired it [5].

In this section we summarise BERT, address how BERT was used in [5] and why the same

technique would not be valid for Twitter based claim detection as seen in [44, 43, 46].

Firstly, we must define what is meant by a vocabulary and a language under the context of
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this report. A vocabulary is a set of words used in a language. While a language is a “method

of human communication, consisting of words used in a structured and conventional way and

conveyed by speech, writing, or gesture” as defined by Oxford Languages.

BERT [5] was developed by Google in 2019 to aid in natural language understanding tasks.

Such as indexing search results and translation between languages. It is a transformer archi-

tecture, meaning it uses self attention layers to process sequences of inputs, many of these self

attention layers are stacked to add depth to the model and increase it’s power (We delve into

it’s architecture in more detail in 4.5). For now, note that an embedding layer is added to

the start of the model, which translates the vocabulary of arbitrary size to a constant size of

768 expected by the self-attention layers. Further, a classification layer is added to the output,

which converts the output latent space of the self-attention layers into number of class scores

for classification tasks (in reality, any layer(s) can be added to the output, to suit any task, but

all applications cited here are classification tasks).

The key principle behind BERT is the ability of models to transfer learning’s between tasks,

meaning that a model can be trained to do one thing using a large dataset and then trained

again on a second (similar and often smaller) dataset, and perform better than it would have,

if it were just trained on the second dataset alone. BERT generalises this concept by training

a model on 2 general natural language understanding tasks. Namely, Masked LM and NSP

(next sentence prediction) where a model is trained to guess the missing word in a sentence or

to guess whether once sentence entails another (more detail in sections 4.6 & 4.6). The same

corpus of text can be used for both tasks, [47] uses a corpus containing 3.3 billion words from

Wikipedia. This is crucial as the embedding layer and the model is kept the same between the

two tasks, since they both are designed to improve the same model, as such both expect the

same vocabulary of words is passed to the embedding layer. Between tasks only the classification

layer changes, which is much cheaper to train than the rest of the model. The result of this is

an embedding layer and a list of self-attention layers which form BERT, which are now able to

understand natural language to a degree. A new classification layer can then be added to this

pre-trained model, and can be trained to solve an arbitrary NLP (natural language processing)

task. In doing so we are transferring the understanding gained in the Masked LM and NSP

tasks to the new problem. [5] does exactly this.

However, note that the same embedding layer is used throughout the process, as such

the vocabulary used in [5] has to be the same as that which was used in [47]. In order

to apply BERT to a new domain we must consider this limitation. There are 2 methods to
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circumvent this constraint. Firstly, we could construct a new large dataset within the new

domain comparable to that used by [47] and train an entirely new model, just as was done

by [47] using Masked LM and NSP. As such, the embedding layer will be trained for the new

domains vocabulary. Secondly, we could just replace the embedding layer with a new embedding

layer and train the model on a dataset from the new domain just as before, but only update the

first layer during training. This would train the embedding layer to best adapt to the existing

self-attention layers that were trained in [47]. This second method assumes that the language

used in the new domain is the same as the old domain, so there is simply a one-to-one mapping

from the original vocabulary to the new vocabulary. This is unlikely, for instance, under the

Twitter domain (section 2.10.1) has a large disparity in both the vocabulary and the language

used when compared to structured text.

2.7 Relation Identification

Once you are able to reliably detect claims, the next component to consider is relation iden-

tification, this addresses the previously ignored grounds identification from [12]. Relation

identification entails the finding of premises that are associated with a claim. The major-

ity of research combines relation identification and stance detection (identifying the nature of

the relation between a claim and it’s grounds). As such, the research on relation identifica-

tion is best split into two categories, macro-analysis (identifying attack/support relations) and

micro-analysis (evaluating attributes of the claim: such as reliability, integrity, and cohesion).

However, as a whole, the field is much less mature than claim detection due to the difficulty

of claim detection and the dependency relation identification has upon strong claim detection.

A supervised approach was taken by [43] using Twitter data, but poor results were achieved

both using the Excitement Open Platform (F1 = 0.17), and surprisingly, even an LSTM strug-

gled (F1=0.2). [53] enjoyed much greater success, with F1=0.934 over a reasonable dataset of

840 tweets that originally referenced news articles. However, their approach classified tweets

into support/attack without classifying whether the tweet is unrelated, instead each training

example is known to relate to the claim tweet. Hence, their performance more closely indicates

the ability of an LSTM to classify sentiment, a task that currently enjoys 96% accuracy, we

covered opinion mining in Opinion Mining.

A model that conducts a microscopic analysis, has been developed by [44], which also

investigates the performance over a mixture of explicit and implicit claims. They achieved a

mean average precision of 0.50 (on the same dataset as [53]), through using a lexicon ap-
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proach combined with an SVM. The field has been revisited more recently by [54], applying

state-of-the-art transformer models, namely RoBERTa (a variation of BERT that is trained

on more data) to a multitude of datasets, achieving F1=0.59, although this is over classical

argumentation datasets (debates) rather than Twitter.

Several unsupervised approaches have been taken, such as [55] (builds on [56]) who used

OpenIE to extract relation tuples. OpenIE is an information extraction tool designed to assist

in reasoning with natural language. Given a sentence, it extracts sets of tuples of 2 words and

identifies the relation between these words. Returning to [55], after applying OpenIE they

then analysed the sentiment coherence, causal relation, normative relation, and relation chain

of relation tuples using probabilistic soft logic (PSL) concluding by classifying the arguments

into support/attack/neutral relations. They achieved an F1 score of 0.808 even exceeding many

supervised approaches. This improves on it’s predecessor [56] which achieved F1=0.73 on the

same dataset.

2.8 Stance detection

The final component typically used in argumentation mining is stance detection, which identifies

the nature of the relationship between the grounds and the claim. It is frequently extended

to assess microscopic aspects of terms such as the quality of claims. Which is indicated by

recognising facts, classifying supporting evidence, identifying sources and their reputation, and

evaluating the logical reasoning used within the claim. Stance detection is often performed

in conjunction with relation identification, as these attributes of a claim greatly assist the

identification of accurate relations. For instance, Opinion Mining provides a strong indication

of attack vs support relations.

Some examples of a microscopic analysis into the nature of the grounds are as follows: [57]

uses evidence classification and identified six categories “news media accounts; blog post; pic-

ture; expert opinion; other types of evidence, and no evidence”, achieving an F1 score of 0.83

when using this microscopic analysis to classify argumentative relations. [46] used linear re-

gression to classify fact-based claims vs opinion-based claims with an F1 score of 0.8. They also

identified sources using simple string matching as well as identifying news outlet names, they

achieved F1=0.67, impressive given the simple, unsupervised approach. [58] takes a granular

approach to claim classification identifying the following types of claim: “Not a claim, Other

type of claim, Quantity (past/present), Prediction, Personal experience, Correlation/causation,

Current laws/rule”. They use a supervised multinomial logistic regression model, achieving
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F1=0.48.

Finally, more recently [59] explored the impact of claims within an argument achieving

F1=0.57 using a supervised BERT model, they note that models using context vectors gain

3.84% accuracy on average, and those using pre-trained encoders (such as BERT) gain 5.49

2.9 Applications

Although Argumentation Mining maps most closely to classical debates [57] it can be easily

seen applied to many further applications, such as reasoning to predict stock prices, evaluate

information reliability, and reduce fake news on social media as demonstrated by [53]. In

reality, it can be applied to any field where you wish to reason with natural language in an

argumentative manner. There are a number of popular sources for argumentative text that

have seen repeated use...

2.9.1 Twitter

Twitter is a microblogging and social media service, where users can post tweets up to 280

characters long. Users post new tweets that can be either the root of a conversation or in

response to an existing tweet. Tweets can also refer to hashtags (topic identifiers) or users

(mentions) within their tweet. All tweets are publicly available. Users can follow other users,

this generates a social network depending on the friends and interests of users. The overall aim

is to create “highly skimmable content”. [60] [61]

Applications of Twitter Data

Twitter is a widely used source of opinions, for instance: political [62]) [63], scientific [64],

planning [16], educational [19] etc. A variety of which already employ sentiment analysis (a

component of stance detection).

The difficulties of twitter

Another noteworthy property of Twitter is how representative it is. It has been shown by both

[65] and [66] that Twitter does not represent any population other than itself, “Sentiment

analysis can be done, just as long as the sentiments do not need to be representative of any

larger population”. In particular, “Twitter users fit the profile of young, well-educated, wealthy

elites”. Although Twitter is used worldwide, it is disproportionately popular in some regions,
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for instance 8.8% of users (with populated account locations) live in the US [67].

2.9.2 IMDB

IMDb (internet movie database) is an online repository of information related to films, TV

and other media. However, primarily it supports user reviews, which allow internet users

to rate a film [1-10] with a title and description for their review. This makes the site very

popular for sentiment analysis tasks [20, 23, 24] as a vast amount of semi-structured text from

a variety of users can be mined from the site, each with ratings that can be used as noisy labels

to indicate the sentiment of the review itself. Furthermore, the text is generally somewhat

argumentative with longer reviews presenting arguments and supporting them with evidence;

however, there is no facility that labels these arguments. Accordingly, IMDb’s uses are very

limited for argumentation mining since data must be annotated either way, sites such as Twitter

(with a broader range of subjects beyond IMDb’s restriction to media) are far more appealing.

2.9.3 Debate Forums

Debate forums host user-generated discussions on proposed controversial topics, where users

can list arguments for/against the topic. One of the most popular of these sites is Kialo, users

categorise their arguments into ’pros’ and ’cons’ against a given topic. Each of these arguments

then create a new topic where users can again list ’pros’ and ’cons’, as such a tree structure

is formed that closely follows the theory for argumentation mining (section 2.1). Due to this

debate forums have consistently been the preferred data source for much of argumentation

mining’s history thanks them providing such a labelled data-set. However, perhaps due to the

extra effort required from users, debate websites such as Kialo are far less popular than main

stream social media, as of writing 106 posts have been uploaded to Kialo according to their

website, while Twitter statistics indicate 1011 tweets are uploaded annually. From this factor

105 difference it is clear to see that social media holds far greater potential to represent a far

larger community of users. It is for this reason that we believe Twitter to be the ideal target

for argumentation mining.

2.10 Summary

Since claim detection will be the study of this report, it is worth reviewing the performance of

the models seen so far.
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Model-Paper Supervision Accuracy Year
1 Joint [39] N 0.56F1 2019
2 TDCOLex [44] Y/N 0.585Map 2018
3 Linear [43] Y 0.56F1 2016
4 Linear [46] Y 0.52 to 0.78F1 2017
5 BERT [5] Y 0.71 2019
6 GNN [50] Y 0.61 2021

Table 2.2: Claim detection performance review

2.10.1 Structured vs Semi-Structured Text

The lower performance models namely 3 and 4 in table 2.10 both use simpler architectures (Lin-

ear Regression) than those that perform better, but they are also applied to more challenging

datasets, namely Twitter which consists of semi-structured text, which has been shown to lack

the type of argumentative structure and discourse makers present in classical argumentation

datasets. For example, a random sample 3 of argumentative sentences have been extracted

from the UKP dataset [48] and the Twitter dataset from [44]

UKP:

1. Because clone cells may show genetic abnormalities, using them on humans will also have

a deadly implication.

2. Higher levels of gun ownership do not produce a safer society and often lead to a higher

numbers of deaths due to gun violence.

3. They may exercise these rights by, for instance, using contraception or natural family

planning.

Twitter:

1. @Nicole_Brewer @CBSPhilly @NYGovCuomo Repubs are against ILLEGAL immigra-

tion. Question is why are the gov and libs FOR illegal immigration

2. @TsepisoMakwetla @safmpmlive Tertiary /University education is a privilege not a right,

especially post-graduate students

3. RT @NAChristakis: Complete gender reversal higher education. Crossover in 1981; by

2026 women:men college degrees 3:2 | @Mark_J_Perry

The contrast in the language used is immediately apparent; the UKP sentences are gram-

matically correct with correct spelling, punctuation, grammar, and capitalisation. While the

Twitter sentences all first begin with tags (@...) and then contain shorter sentences, which in
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the third example is grammatically incorrect being more of a list than a sentence. You can also

see the use of capitalisation for emphasis in 2 examples as well as numbers and symbols such

as “:” and “|”. A closer look at the Twitter dataset also reveals a number of tweets containing

emojis such as “but we dont need gun control right https://t.co/kLtYDqfH6k” as well as URL

links. Seeing this discrepancy in the language used between the two datasets highlights that

the performance of models trained on classical debate style datasets such as the UKP dataset

should not be directly compared to modern social media datasets such as Twitter.

Knowing this if we consider the best performing model from our research, namely BERT

as used in [5]. The model was evaluated on the UKP and IBM datasets (2 classical datasets

containing structured text) but has not been evaluated on social media datasets, or any dataset

containing semi-structured text for that matter. As of writing, we have been unable to find

any such paper that evaluates the performance of BERT on such a dataset. This represents

a significant gap in the current research in the field, as there is no understanding of how the

difficulty of claim detection varies between structured and semi-structured datasets.
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Chapter 3

Specification

As shown in the review of structured vs semi-structured text (see section 2.10.1) there is a

significant discontinuity in the research conducted on claim detection. Older and simpler models

have primarily been applied to semi-structured text, while newer state of the art models have

only been applied to structured text. The primary goal of our implementation is to address

this discrepancy by evaluating the performance of a state of the art model on both structured

and semi-structured data. Furthermore, it has been shown that there is a significant difference

in the vocabulary and language of structured vs semi-structured text (see section 2.10.1), and

that due to this, modifications must be made to a model in order to facilitate this difference

(section 2.6.3). Accordingly, the second goal is to make the necessary modifications to adapt

structured text models to semi-structured text models and validate their performance. To more

easily discriminate whether these goals have been met, they have been decomposed into a set

of specific and measurable requirements.

3.1 User Requirements

The solution developed is only for theoretical purposes, and despite this there will exist some

user interaction. Since the user will have to be able to train the model and evaluate performance.

However, due to the academic nature of the investigation, it is reasonable to assume that any

user will have an aptitude for code-based projects. Formally, the project must provide the

following facilities to a user:

1. user can commence model training with minimal understanding of the implementation

2. performance in each test case is clearly reported with no ambiguity
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3. performance metrics reported via the widely adopted F1-score and Accuracy

4. self-documenting code is used throughout the implementation

Self-documenting means that naming conventions and code structure provide sufficient infor-

mation to understand the code without prior knowledge. Broadly speaking this is the approach

adopted in the field of machine learning, and as such it is apt to adopt this approach in this

project too. Under this scheme, it is conventional to prioritise the readability of our code over

its performance.

3.2 Functional Requirements

This section elaborates on the expected behaviour of the solution.

1. develop a model to detect claims in semi-structured text at the sentence level

2. report the performance of this model on semi-structured text as well as structured text,

facilitating their fair comparison

3. make necessary modifications to state of the art models to suit semi-structured text

4. report the performance of this modified model in a way that can be fairly compared with

the unmodified model’s performance

5. the model can be run on any machine independent of its hardware or operating system

6. the model can be trained in under a week with reasonable hardware

There are no requirements on the performance of the model, as the goal of the investigation

is to better understand the performance on semi-structured text, although it is reasonable to

assume that the model should outperform classical architectures such as [43, 46], which achieve

under 0.56F1
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Chapter 4

Design

Following the specification, there are a number of questions to be addressed, each of which will

be addressed in turn throughout the design.

1. Which structured text dataset to use?

2. Which semi-structured text dataset to use?

3. Which state of the art transformer architecture to use in order to detect claims within

these datasets?

4. How to pre-process each dataset for input to this architecture

5. The exact architecture used by this model

6. Architectural changes to suit semi-structured text

4.1 Data - Which structured text dataset to use?

Classically research has always focused on claim detection from structured text copra; accord-

ingly, there is a choice of datasets, most of which have been labelled. Unfortunately, very few

of these have been published:

Given the availability of datasets, our choice is limited to the UKP dataset, as it is the

only structured text dataset that has been labelled and is publicly available. Fortunately, it

is also used in the best reference implementation of BERT for claim detection [5], so it will

allow direct validation of the performance of our implementation. The UKP dataset also has

a high labelling agreement with a Cohen Kappa score of 0.721, this greatly exceeds the 0.45
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Name labelled source published
UKP [48] Y News, blogs, debates, encyclopedias Y
IBM [49] N Wikipedia, debates Y

[68] Y Wikipedia, debates N
[40] Y Persuasive Essays N

Table 4.1: structured text datasets

Fleiss kappa agreement achieved in the IBM dataset [49], although 10 annotators were used

here rather than 2.

4.2 Data - Which semi-structured text dataset to use?

There is a similar problem with semi-structured text data sets, in which very few datasets

are publicly available. For instance DART [45] sees heavy use in the field [43, 46] but is

unfortunately unavailable much like the datasets used in [69, 58, 70]. The only suitable dataset

found during the investigation is from [44] which covers a corpus of 2520 tweets; however, only

524 of these tweets are public/recent, and can be retrieved via the Twitter API. This leaves

us with the task of constructing our own dataset, there are 3 commonly used sources for semi-

structured text, IMDb, Twitter and Reddit. Since IMDb is restricted to media, and Twitter has

seen more use in historical research than Reddit, Twitter is the most applicable. Accordingly,

tweets will be extracted using the Twitter API and manually annotated with whether they

contain a claim. [44, 37] will be used to reinforce what constitutes a claim, alongside the

definition given in section 2.6.

4.3 Which transformer to use?

Since BERT’s inception in 2019, many more Transformer models have been developed, most

are variants of BERT, but some change the architecture completely. The 5 most notable models

are:

1. GPT-2

2. GPT-3

3. BERT

4. RoBERTa

5. XLNet
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6. DistilBERT

BERT [47], XLNet [23] and RoBERTa [71] share the same underlying architecture, all having

12 stacked self-attention layers and 110 million parameters, structured in an encoding architec-

ture, meaning they are best suited for interpreting natural language. XLNet and RoBERTa are

newer approaches to train BERT, involving more data and compute power. DistilBERT [72]

is another revision of BERT that simplifies the architecture and reduces the training time at a

small cost to performance. XLNet modifies the BERT training process but also requires 10x

more data (33 billion words vs. 3.3 billion used by BERT), which takes far longer to train.

RoBERTa makes minor changes to the BERT training processes but is also trained on a much

larger corpus. A direct comparison has been made between BERT, RoBERTa, XLNet and Dis-

tilBERT in [73] applying each model to the same emotion recognition task. This is essentially

an opinion mining task, which is a predecessor of argumentation mining, hence their results are

extremely relevant to claim detection. In their experimentation, they found that both XLNet

and RoBERTa outperformed BERT by 4% and 3% respectively. With DistillBERT performing

3% worse.

GPT-2 [74] is a transformer model developed by OpenAI in 2019 with 1.5 billion parameters

and 36 stacked self-attention layers. GPT-3 is a later iteration of GPT-2 that increases the

number of parameters to 175 billion. Each are decoder architectures, meaning they are best

suited for natural language generation. For this reason, GPT models are not suitable for

the task of claim detection as we are interpreting natural language rather than generating it.

Furthermore, their vast number of parameters makes them intractable to work with without

enormous compute resources.

In conclusion, a BERT based model is most suited to claim detection, narrowing our options

to either BERT, RoBERTa, XLNet, or DistilBERT. Although XLNet and RoBERTa boast

better performance than BERT they each require far more data and compute time to train,

so are not viable for the project. Further, we believe that some of the 3% performance gain

RoBERTa has over BERT could be down to their Dynamic Masked LM technique, which could

be easily integrated into BERT’s pre-training. Using BERT has the added benefit of being

directly applicable to all BERT derivatives, allowing our findings to have a much broader scope

to aid future research, a benefit which could not be understated! Finally and most importantly,

BERT has already seen use in the field [5], meaning that the model trained here could be easily

imported across to these other projects. It is for these two reasons that BERT is preferred over

DistilBERT, despite its better performance on small datasets. Overall, we believe that BERT as
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used in [47] is the best architecture choice for claim detection at the time of writing, especially

with the addition of Dynamic Masked LM.

4.4 Input Encoding

Now that we have established both what architecture to use, and what data it will be applied

to we can address how to encode the data for the model. The structured text dataset is very

conventional, so conventional NLP prepossessing can be used; however, the semi-structured

Twitter dataset contains a variety of unique features that must first be addressed.

4.4.1 Twitter Pre-Processing

As highlighted in section 2.10.1, Tweets contain a number of platform-specific features:

1. Retweets

2. Mentions

3. Hashtags

4. URL

5. Emojis

As used in [44] retweets, mentions, hashtags and URLs can all be encoded as binary

features by replacing each occurrence with [RT], [MEN], [TAG], [URL] respectively, this reduces

the vocabulary as there are infinitely many permutations of each feature. By extension, this

ensures that unseen data is also interpreted as the correct feature.

To date, no papers have addressed the use of emojis in semi-structured text, despite [30]

finding ”Emoji information is useful in sentiment analysis“. There are two methods in which

this can be done, firstly by simply assigning each emojis its own token, however, there are

a vast number of emojis and emoticons (ASCII emojis) so this would be expensive for the

vocabulary. Instead each emoji can be mapped to it’s description according to the Unicode

Consortium [75], the same can be done for emoticons [76]. This has numerous advantages;

firstly, it reduces the vocabulary by using English words likely to already be contained in the

vocabulary to describe each emoticon. Secondly, it addresses the emoji sequence modifiers

(section 2.5.1), as these are included in the description mappings. Finally, it standardises the

resultant dataset to contain only conventional natural language, making the dataset easier to

use by others in future research.
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Figure 4.1: Pre-Processing pipeline example

4.4.2 Tokenisation

Now that the Twitter-specific features have been removed, the corpus is simply plain text.

Plain text cannot be directly processed by BERT instead text must be mapped to a sequence

of ID’s, the first step in this process is tokenisation. Tokenisation decomposes text into lists

of smaller strings called tokens such that these tokens can form a vocabulary that is used

throughout the corpus. There are 2 key forms of tokenisation, word level and word piece

level. At the word level, we split text to form a token from each word/symbol. While a word

piece tokeniser (described in detail in section 2.6.3) decomposes each word further into its root,

such that multiple words can map to the same root. Historically word-level tokenisation has

been the more popular choice; however, transformer architectures have great power to draw

context from elsewhere in the input, for this reason, word piece tokenisation was successfully

adopted with the BertWordPieceTokenizer in [47] and has been frequently used since. The

BertWordPieceTokenizer is the best choice, as it is designed with transformer models in mind,

it’s also used in the reference implementation [5] and produces a vocabulary that can encode

unseen words (see section 2.6.3). Finally, this list of tokens is encoded by assigning a unique

number to each token in the vocabulary (which contains all tokens encountered during training).

This gives a mapping from tokens to numbers which can be applied to each list of tokens to

give a list of IDs. Now, these IDs can be one-hot encoded and passed to the model for input.

Note that a one-hot encoding is formed by a vector of zeros of length equal to the vocabulary

where the index equal to the ID is set to 1.

4.4.3 Cased or Uncased

Another decision must be made before looking at the architecture, which is whether to use a

cased or uncased model, in a cased model (unlike the pipeline example) text is not converted

to lower case before tokenisation. A cased model greatly increases the size of the vocabulary of
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a model and requires a much larger dataset to expose each word under both a capitalised and

non-capitalised context. This is important given the size of the semi-structured text corpus

manually created later. Due to this, the reference implementation [5] uses an uncased model;

accordingly, an uncased model will be used throughout our implementation.

4.5 BERT Architecture

BERT [47] (Bidirectional Encoder Representations from Transformers) is a sequence-to-sequence

model that can process an arbitrary sequence of inputs, encode them and then decode them

into a arbitrary sequence of outputs. It is designed for natural language understanding, for

example, question answering or language translation. BERT is a Transformer model, which

means it employs self-attention layers. The architecture is as follows:

1. Embedding layer - transforms the input vocabulary (30k words) into fixed vector of size

h (where h is the latent space size for the model)

2. Encoder - Sequence of 12 layers, each consisting of a self-attention layer followed by a

dense (feed-forward) layer

3. Decoder - Sequence of 12 layers, each consisting of a self-attention layer followed by an

encoder-decoder attention layer followed by a dense (feed-forward) layer

There are multiple configurations of BERT given in the original paper, ranging from tiny to

mini to small and finally base where each varies the number of layers and the size of the latent

(hidden) space. We will be using BERT base, this version contains the embedding layer and a

12 layer encoder, with a latent space h=768. Although it requires more time and data to train,

this is the same architecture as was used by [5]. As such, we can directly validate our baseline

model performance, since both their code and data set is publicly available. Additionally, using

the largest possible architecture reduces the chances that the model has insufficient power to

fit to the dataset.

Since claim detection is a classification problem, we don’t require a sequence of outputs,

hence only the embedding layer and encoder is used, with a classification layer added afterward.

In the following sections, we explain the architecture of these 3 components (as is implemented

in the PyTorch source code [77]), but first, we must address how the input to these components

is generated.
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4.5.1 Segment IDs & Input Masks

BERT relies on 3 input sequences to preserve contextual information that would otherwise be

lost due to the architecture:

• Input IDs - List of token ID’s generated during tokenisation4.4.2

• Segment IDs - Distinguishes between the first (0) and second (1) sentence for NSP4.6

• Input Mask - Vector of 1’s for all input ID’s, otherwise 0

A cumulative sum is applied to the input mask as soon as it is passed to the model to generate

positional embeddings, this proves the context for the position of the token in the input.

4.5.2 Embedding Layer

The embedding layer is the first layer in the BERT model, meaning it is directly applied to

the encoded input data (section 4.4). The input encoding results in a list of ID’s which encode

an input sentence. The embedding layer’s purpose is to convert this list of input ID’s into a

list of smaller vectors that can be interpreted by the following layers. Depending on the input

vocabulary, there are typically 30k different ID’s, using one-hot-encoding gives us a vector with

30k elements for each input token. The embedding layer is a dense feed-forward layer with 30k

inputs and 768 outputs, this same dense layer is applied to every ID in the list of input ID’s.

A similar dense layer is applied to the segment ID’s, but this has 2 inputs and 768 outputs

since the segment ID’s are either 1 or 0. Finally, a similar dense layer is also applied to the

position embeddings, the maximum value of the positional embeddings depends on the length

of the input since they denote the input index. [47] made a reasonable decision of limiting

the input size to 512, hence limiting the maximum sentence length supported by the model

to 512 tokens, this is very practical since the model required for such a long sequence would

use copious amounts of memory so most implementations limit the sentence length to 64-128

tokens anyway. Given the 512 possible inputs, the position embedding is processed by a dense

layer with 512 inputs and 768 outputs. The result of these 3 dense layers is a set of 3 vectors,

each of length 768, for every input token, which encodes the token, position and segment, the

sum of these is then taken to give a single 768 element vector.

4.5.3 Self-Attention

Self-attention layers are designed to focus attention on the most important context for the

given input time step in both the forward and backward directions (left & right context). For
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example the word “it” always requires context to understand its meaning, such context could

be provided before or after its use. The input vector from the previous layer is passed through 3

dense layers, each with 768 inputs and 768 outputs, giving 3 vectors. These vectors are named

Query, Key, Value. There n of these triples, where n is the number of tokens input to the

embedding layer, where the ith triple Queryi, Keyi, V aluei corresponds to the ith token input

to the model xi. From this we can calculate a score for each token:

Scorej =
∑
i∈n

queryi · keyj

Typically the score is then normalised by the square root of the number of attention heads

where the number of attention heads is just the size of the input, n.

Scorej = Scorej ÷
√

n

The score is then passed through the SoftMax function; this normalises the output into a

probability distribution that sums to 1, helping to prevent exploding gradients.

Probj = − log( eScorej∑
k eScorek

)

Finally, the probability distribution is multiplied by the Value vector we calculated, giving

the context vector

Contextj = Probj · V aluej

This gives a 768 element vector that combines information from every other token in the

input, hence bidirectional transformer in the name, as the attention goes in both directions.

Under BERT’s architecture, 12 of these layers are stacked, each taking a list of n 768 element

vectors and outputting n 768 element vectors.

4.5.4 Classification Layer

The classification layer is a dense layer that maps from the 768 outputs of the network to n

classes. Although claim detection is a binary classification problem so technically only requires

a single output, using an output neuron for each class makes the architecture more versatile. For

instance, it can be easily adjusted for 3 class classification such as that supported by the UKP

(structured text) dataset with labels NotAClaim, ForClaim, and AgainstClaim. And beyond
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this, for Masked LM tasks where an arbitrary number of classes may be needed depending on

the size of the vocabulary.

Activation Function

In the reference implementation, an activation function is not used [5], this does not follow the

norm of applying the SoftMax activation function to the output for multi-class classification

problems. The SoftMax activation converts the output into a probability distribution which

naturally suits the classification problem. The SoftMax function is defined as:

SoftMax(z)i = − log( ezi∑
j ezj

)

An alternative activation function would be the Sigmoid activation function which maps

each output to the range [0,1]. It is better suited to multi-label classification (no constraint

on the number of classes an example can be assigned to) problems as there is no restriction

for the output to sum to 1. Since both normal claim detection and 3 label claim detection are

single-label classification problems, the SoftMax activation function is most applicable.

4.5.5 Loss Function

Given the SoftMax function is being used and the multi-class classification problem, the best

loss function to train the network with is the cross-entropy loss (Log Loss), as it is designed to

measure the difference between probability distributions, since both our prediction and target

are probability distributions. It is defined as:

CrossEntropyLoss(y, ŷ) = − 1
N

N∑
i=1

yi log(ŷi)

Where y is the target probability distribution, ŷ is the predicted probability distribution,

and N is the size of the output vector. A common alternative to cross-entropy loss is the L2

loss which simply measures the euclidean distance between two vectors, this is not ideal as we

should pay most attention to the label assigned to the target class. Simply put, we care most

about the class predicted in ŷ which is given by the max element, and how that compares to

the maximum element in the target ŷ, the cross-entropy loss does this, while L2 loss does not.

BCE Loss (binary cross entropy) is another common loss function, which is a generalisation

of the cross entropy loss, facilitating multi-label classification:
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BCELoss(y, ŷ) = 1
N

N∑
i=1

yi log(ŷi) + (1 − yi) log(1 − ŷi)

Since we are only performing single-label classification, BCE loss is not as applicable as the

cross-entropy loss. The exception to this is during Masked LM4.6 pre-training, as Masked LM

is a multi-label classification problem; BCE loss must be used here.

4.6 Modifications to suit semi-structured text

As discussed in section 2.6.3, BERT was not trained with semi-structured text corpora in mind,

as such the pre-trained model has a vocabulary and trained weights that reflect the vocabulary

and language used in structured text. According to section 2.6.3, the only way to account for

both of these factors is to retrain the model just as it was in [47] but on a semi-structured

text corpus. However, the unsupervised pre-training methods used in [47] require a very large

dataset, in their implementation 3.3 billion words were used. Accordingly, the semi-structured

text corpus gathered for this study must be of similar size. Thankfully, the pre-training methods

used were Masked LM and NSP which are both unsupervised, so text can simply be mined

from Twitter and directly used to train the model.

Masked LM

Masked LM (MLM) is the first pre-training step for BERT which functions by training the

model to guess the missing word(s) in an input sentence. MLM is also referred to as the Cloze

task [78]. It functions by extracting the set of all sentences from the text corpus then masking

15% of the input tokens and adding the ID’s of these tokens to the target (multiple ID’s can

be added to the target under the one-hot encoding, as it’ll simply become an n-hot encoding).

Each of the tokens selected to be masked are then dealt with in one of three ways:

1. it is replaced with a [MASK] token 80% of the time

2. replaced with a random token 10% of the time

3. left unchanged 10% of the time

The same classification layer architecture is used as before, but now is configured to have

as many outputs as the vocabulary. Technically, the SoftMax activation is no longer applicable

due to the multi-label nature of the task, however, for consistency, SoftMax will be used, further

SoftMax is also used in the original paper [47].
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It is worth noting the difference between the Masked LM used by Google’s original BERT

research [47] vs Facebook’s modifications with RoBERTa [71]. As one of the many changes

in RoBERTa, Facebook introduced Dynamic Masking where the chosen masked words were

changed each epoch. In Google’s version, the masked words are generated once for each sen-

tence, then remain the same for every following epoch. We have chosen to include RoBERTa’s

mechanism in our pre-training for two reasons. Firstly RoBERTa boasts a 3% performance

improvement over BERT, which must be down in part at least to their Dynamic Masking al-

though this has not been conclusively shown. Secondly, it has the added benefit of increasing

the effective training corpus, in the case of the UKP dataset it increases from 80,698 samples

to 2,056,088.

Next Sentence Prediction

Next sentence prediction is the second pre-training step, which is applied to the output of the

MLM train step. Next sentence prediction (NSP) is a textual entailment task whereby BERT

is given a pair of sentences and must deduce whether one entails the other. 50% of the training

examples are chosen to have a pair of sentences where one follows the other in the original

corpus, the remaining 50% have a random second sentence that does not follow the first. This

trains the model to understand the relationships between sentences; together with MLM, this

gives the model a good understanding of the language of the corpus. In the case of the UKP

dataset 22,236 NSP training samples can be generated. In the case of the Twitter dataset

(described later) 148,844 NSP training samples can be generated. The classification layer used

for NSP is identical to that used for claim detection, as both are binary classification problems.

Pre-Training Result

The result of these 2 pre-training steps is a model that has been trained in the target domain,

be it Twitter (for semi-structured text) or the UKP corpus (structured text). This trained

model has both the correct embeddings for the domain vocabulary and trained weights that

reflect the language used in that domain. This pre-trained model can then be fine-tuned for

claim detection in the same manner as the reference implementation [5].
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Chapter 5

Implementation

The project was implemented in a series of phases. First, a claim detection model is im-

plemented and verified to have the same performance on the UKP dataset as the reference

implementation. Then the model is pre-trained on the UKP dataset and then fine-tuned again

for claim detection and the performance compared. Since the default BERT model is pre-

trained for structured text, the additional pre-training is not expected to improve performance.

Now we move onto the semi-structured Twitter corpus, first, we must mine the dataset from

Twitter, then annotate this corpus, and train the default BERT model for claim detection on

it. Finally, we pre-train a model on the Twitter corpus and fine-tune it for claim detection, we

expect that the additional pre-training step will improve performance.

Figure 5.1: Implementation Pipeline
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5.1 Development Language

Before anything can be developed, the programming language used for the project must be

established. The primary dependencies are Tensorflow/Pytorch with supporting modules that

implement the BERT architecture, as well as support to interface with the Twitter API. The

only language that supports all 3 of these requirements is Python, which is the de facto standard

for most machine learning projects. The code is organised into interactive blocks, following

the convention for machine learning projects, as they allow both code and it’s outputs to be

reported in a single document. The specific tool we will be using is iPython simply due to

personal preference, jupyter notebooks provide the exact same functionality.

5.2 Dataset Construction

For the sake of grouping the machine learning components together, let’s first discuss how the

semi-structured text corpus was mined and annotated.

5.2.1 Mining Twitter w API

An existing dataset of tweets could have been used, but mining tweets from Twitter grants

greater flexibility over the chosen topics. Further an argumentation mining solution could then

use the Twitter interfaces developed here in later research. Twitter has 2 versions of their API

v1 and v2, crucially the version 2 API supports conversation ID’s, whereby each new tweet is

assigned a conversation ID and any replies to this tweet maintain this conversation ID. The

support for conversations enables the extraction of conversations spanning multiple tweets,

increasing the chances of having multiple claims over the same topic. It also adds depth to the

argumentation tree, should future research progress to that stage. For this reason, the v2 API

was chosen, despite it only being fully deployed in November 15th, 2021. Currently, the only

python package the supports the v2 API is the TwitterAPI package, which only provides an

interface to send string requests to Twitter. Since more functionality than this is required, a

wrapper was developed that supports the following operations:

• get_user - retrieves all the attributes of a given username, such as their name, Twitter

user id, account age, user description, location etc (locations are countries so are not

personally identifiable)

• get_recent_tweets - retrieves all the tweets the user has posted
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• get_tweet - retrieves an individual tweet given it’s ID

• get_all_replies - given a conversation ID retrieves all the tweets in that conversation

• search - searches using Twitter’s search algorithm, facilitating most queries, such as

searching by hashtag or keyword

Twitter offers a plethora of attributes for each tweet, the API Wrapper requests all of these

attributes: attachments, author_id, context_annotations, conversation_id, created_at,

entities, geo, id, in_reply_to_user_id, lang, possibly_sensitive, public_metrics,

referenced_tweets, reply_settings, source, text, withheld. Note the public_metrics

attribute contains a number of useful sub-attributes such as the number of likes and retweets.

These can be used to measure the engagement users have with a tweet and hence focus attention

on those tweets that receive the most attention on the platform.

There are three major limitations of the Twitter API, the primary of which are the imposed

rate limits which limit all access levels to 900 tweets every 15 minutes. Due to this after 6

days of continual mining, only 500k tweets were collected. Secondly, under the elevated access

secured for this project, only recent tweets can be mined. However, this can be resolved, given

support from an academic body, academic access can be granted giving full access to historical

tweets although the rate limitations remain. Since the rate limits were found to be more of

a limiting factor obtaining such access was unnecessary. Finally, each request is restricted to

retrieving 100 tweets, this is a major limitation as many conversations on Twitter can span

thousands of tweets or more. Thankfully, this can be resolved by using a Twitter Pager which

iterates through the request, decomposing a large query over thousands of tweets into many

smaller sub queries. This enabled the retrieval of entire conversations from Twitter, the wrapper

operations were modified to support this paging, and given the post-fix _all.

Since Twitter API interactions depend on a large number of interactions, all requests are

wrapped in a safety method that handles any exceptions caused by network errors/insufficient

access rights, or simply invalid requests. Errors are handled silently so as to not interrupt data

mining operations, since the application must run continuously over extended periods of time,

handling exceptions silently is very important. During execution, network errors proved to be

very common, highlighting the importance of this silent error handling.
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5.2.2 What to mine?

A mixture of conversations over controversial topics and popular users were mined, the popular

tags #unpopularopinion and #discussion were focused on, but a variety of media topics such as

Harry Potter and Marvel were mined, as well as a number of users such as the BBC, NASA and

Elon Musk. Although it is worth noting that the entire conversation was mined for each tweet

within each set of 100 search results, as such there is far more subject diversity than what is

listed here. #unpopularopinion and #discussion are preferred as they are very subject-agnostic

terms. Overall, a corpus of 471,427 Tweets was mined over the course of 6 days, containing

8,037,391 words, this is roughly a quarter the size of the Google dataset; however, we believe

this will suffice given the use of dynamic masked LM.

5.2.3 Processing Twitter

Now we have a dataset of 471k tweets, before we pass this data to the model, the Twitter-

specific features must be binarised according to section 4.4.1. This processing is performed

before sanitisation as the binarisation also helps to group together posts made by bots (more

on this later). First regex (regular expression) is used to match mentions, hashtags and URL’s.

Regex was chosen as it fully specifies the criteria used to match subsets of text in a simple

string. The following Regex formulas were used:

• Mentions - @[^ !@#$%^&*(),.?":{}<>]* - uses a non matching list to stop a tag when

any of the symbols are encountered

• Hashtags - #[^ !@#$%^&*(),.?":{}<>]* - much the same as mentions

• URLs - (https?:\/\/(?:www\.|(?!www))[a-zA-Z0-9][a-zA-Z0-9-]+[a-zA-Z0-9]\.[^\s]2,|www\.[a-

zA-Z0-9][a-zA-Z0-9-]+[a-zA-Z0-9]\.[^\s]2,|https?:\/\/(?:www\.|(?!www))[a-zA-Z0-9]+\.[^\s]2,|www\.[a-

zA-Z0-9]+\.[^\s]2,) - commonly cited across the web as a good URL regex

Retweet tokens only appear at the start of a tweet; these were binarised by simply mapping

appearances of rt at the start of a tweet to [RT].

Next emojis are mapped to their descriptions; there are two forms of Emoji’s commonly

used on Twitter, Unicode and ASCII. Unicode Emoji descriptions have been provided by the

Unicode Consortium [75], which has been exposed to python with the Emoji python package.

ASCII emoticons have been manually imported according to [76]. Both mappings are combined

and then used to replace any Unicode or ASCII emoticon appearances with their descriptions.
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Finally, due to Twitter being a multilingual platform, non-English tweets must be removed;

thankfully, Twitter encodes this information within the meta-data for a tweet. So any tweets

with a language attribute not equal to 'en' are deleted.

5.2.4 Sanitisation

Before using the dataset it must be sanitised, as Twitter contains many bots, which post very

similar messages thousands of times. Fortunately, most of these bots only vary these messages

using random URLs and mentions. Consequently, after binarising mentions, tags, retweets, and

URLs, the duplicated tweets are simply deleted; this minimises the number of tweets posted

by bots without losing any data, as the number of unique training examples remains constant.

Following this sanitization, we are left with 266,760 tweets and 5,618,315 words.

5.2.5 Reconstructing the annotated dataset

The dataset used in [44] is the most complete dataset of labeled tweets available at this time.

The dataset is licensed for public use, but due to this, the tweets themselves cannot be publicly

distributed. As such, the dataset contains only a list of tweet IDs and binary claim labels.

Therefore, the tweets had to be extracted using the get_tweet command from the Twitter

wrapper. The tweets are then processed and sanitised just the same as the other tweets we

mined. The new tweets are then merged with the existing dataset of tweets collected in section

5.2.2. Unfortunately, due to Twitter’s API restrictions, only 524 of the 2500 tweets could be

recovered, either because they were not posted publicly or because they are no longer classified

as recent tweets by Twitter. This adds more pressure for annotating our own dataset in order

to have sufficient data to fine-tune the model.

5.2.6 Annotating

Tweets were annotated to determine whether they contained a claim, according to the definition

“a statement that something is true or is a fact, although other people might not believe it” [34].

Inspiration was also taken from [44] to guide where to place the boundary between claim and

non-claim tweets. Due to the informal nature of Twitter, the boundary between the two is very

obscure. As such annotating Tweets is a particularly time-consuming task, since the language

used often leaves the meaning up to interpretation. To mitigate this, any tweets that could be

interpreted either way were annotated as non-claim tweets, erring on the side of caution. For

example, rhetorical questions are extremely common in the topics chosen for this study. With

43



a typical tweet reading along the lines of “What have those countries contributed to the world

in terms of advancement of quality of life?” the tweet’s context implies it is claiming that

the countries at question contributed nothing to quality of life; however, since this claim is not

explicit, the tweet will be annotated as a non-claim tweet. After annotating the Twitter dataset

the balance between the two classes is also considered, in order to remove the possibility of a

biased model towards one of the classes, an equal number of claim and non-claim sentences is

sampled.

5.2.7 Vocabulary

Finally a vocabulary must be decided for both the UKP and Twitter datasets. The UKP

dataset will use the vocabulary of the default pre-trained model provided by Google. Since the

Twitter model is entirely new, a new vocabulary will also be generated, this is done with a word

piece tokeniser which maps the top 30522 words that appear most frequently in the dataset to

ID’s and stores the result in a local file for later use. All interactions with the Twitter dataset

will use this ID mapping for the sake of consistency; this way the embedding layer will remain

transferable between the Masked LM, NSP and claim detection stages.

Tokenisers

It is the job of the tokeniser to generate the vocabulary; there are 2 word piece tokenis-

ers available for python the BertTokenizer and the BertWordPieceTokenizer. Both of

which are provided in the transformers package from hugging face. Unfortunately, only the

BertWordPieceTokenizer supports fitting the vocabulary, and the BertTokenizer only sup-

ports transforming data into ID’s using the vocabulary. As such the vocabulary generated and

stored by the BertWordPieceTokenizer and loaded into the BertTokenizer. This is not ideal

as the special tokens [URL], [RT], [TAG], [MEN] are not treated correctly (this is manually

corrected for in the implementation used). Further loading from a vocabulary is a deprecated

feature of the BertTokenizer. None of this is ideal, but due to a lack of documentation and

alternatives, this is the best solution for a custom word piece tokeniser.

5.2.8 Test-Train Split

Following the convention, both the UKP and Twitter datasets were split into training, testing,

and validation sets. The model is first trained on the dataset, then evaluated on the test set,

then the models hyper parameters were improved (learning rate, batch size and optimisation
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function), and the model was trained again on the test dataset. This process was repeated until

the performance on the test set was maximised. Finally, the model’s performance was measured

on the validation set, meaning that the performance is gauged on an entirely unseen dataset.

The UKP dataset has an existing train-test-validation split of 72%-20%-8% respectively. While

a more conservative split of 80%-13%-7% was chosen for the Twitter dataset to conserve as

much of the training data as possible.

5.3 Model & Training

In this section, the methods through which the model will be implemented and trained are

discussed. Initially, we discussed the best framework to develop the model with. Then build on

the 3 different training tasks, namely claim detection, masked LM and next sentence prediction.

For each, we cover how they have been implemented in order to follow the design as closely as

possible. We also propose a variety of methods that differ from existing research, in order to

increase performance, or better utilise the training data for the given domains.

5.3.1 Framework

First the machine learning framework must be chosen; this provides the necessary tools to

implement and train a large host of models, the two most popular frameworks are Tensorflow

and PyTorch. These frameworks automate the back-propagation process used to train differen-

tiable models such as BERT using auto-grad. Auto-grad is a method of automatically tracking

the gradients used in all mathematical operations during the forward pass of a model, such

that these gradients can be automatically propagated back through the network to update

the parameters during the backwards pass. Without auto-grad gradient flows would have to

be manually calculated for each newly developed architecture, at a great time cost. BERT

was originally developed for Tensorflow, but several libraries have been developed to help sim-

plify working with BERT, the most notable being the Hugging Face transformer library. This

library supports both the Tensorflow and Pytorch back-ends and was used in the reference

implementation [5]. This leaves the choice of ML library mostly down to personal preference;

however, PyTorch was chosen to match the reference implementation to help make the project

as comparable as possible to the reference implementation.
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Acceleration

PyTorch supports GPU-acceleration which allows for the majority of computation to be par-

allelised, greatly increasing performance. However, many PC’s do not have powerful GPU’s

(Graphics processing units). To accommodate for this, and help increase the accessibility of

the project, if a GPU is present in the users system it will be used, otherwise it will not, instead

computation will be performed on the CPU. For the remainder of the investigation, a system

with a Ryzen 7 3800X CPU and NVIDIA Titan Xp GPU was used, even given the highly

threaded CPU (16 threads @ 4Ghz), GPU acceleration yielded a 6x performance improvement.

5.3.2 Replacing BERT’s Vocabulary

The first consideration we must make is how to train a new vocabulary, as this subject is not

covered in either the reference implementation[5] or Google’s paper[47]. The BERT Hugging

Face transformer implementation uses the exact architecture used in the original BERT imple-

mentation [5], as such the embedding layer expects a vocabulary of 30,522 words. However,

there is no guarantee that the size of the vocabulary of the Twitter dataset is the same as that

used in the original implementation. And in fact, the Twitter dataset indeed contains 100,268

unique words.

There are two solutions to this problem; first, the embedding layer can be replaced, or

secondly, the Twitter vocabulary could be forced to contain 30522 words. Changing the em-

bedding layer could have unintended consequences, as it would require the modification of an

external implementation which is both unknown to us and is subject to changes and updates in

the future. Consequently, forcing the vocabulary to contain 30,522 words was chosen, this was

made possible by using a BERT specific word piece tokeniser which kept only the top 30,522

words (see section 5.2.7), minimising the loss of information.

5.3.3 Replacing BERT’s Classification layer

Following the design established in section 4, a classification layer must be added to the output

of the BERT model for each of the 3 tasks that we’ll be training BERT for. The BERT Hugging

Face transformer library does provide a classification variant of the BERT model which adds

this layer. This classification variant is used in the reference implementation [5]. However, it

does use a SoftMax activation layer as one would expect to see when performing classification. I

believe the reference implementation’s use of this classification variant to be an oversight due to

this reason. Secondly, the BERT Hugging Face classification variant does not explicitly return
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the entire state of model expected after calling, instead the cross-entropy loss is returned when

the model is in the training mode, and the actual output of the model is returned when in

evaluation mode. Changing the return type like this is confusing and doesn’t follow functional

programming conventions. Thirdly, the classification layer will be changed between each of the

3 tasks the model is trained on, the hugging face implementation adds dependencies to this

classification layer, so it cannot be simply replaced.

The implementation used in this investigation resolves these issues by using the standard

BERT implementation and adding the classification layer independently. The return tuple

is also invariant to the mode in which the model is in, always returning the output of the

classification layer, the output of the BERT model, the pooled output and the hidden states

of the network. Returning all these features facilitates any operations that could be performed

in future research, such as the clustering using embeddings seen in [5]. The separation of the

model and the loss function also allows us to use the cross-entropy loss during NSP and Claim

Detection tasks, but the BCE loss during Mask LM, according to our design. Finally, it also

reduces the dependency on the implementation of the BERT Hugging Face transformer, as this

component of the model can be changed in a single line to a different implementation of BERT.

Such as the original Tensorflow implementation of BERT from google’s paper [47], accordingly

we could independently verify the correctness of the Hugging Face implementation of BERT,

although this is beyond the scope of our investigation.

5.3.4 Optimiser Choice & Learning Rate

In order to train the model, an optimiser must be chosen; optimisers adjust hyper-parameters

to minimise the loss. The most simple of which is stochastic gradient descent (SGD). SGD

keeps the learning rate constant throughout training, so weight updates are simply the back-

propagated error multiplied by the learning rate each iteration. Adam is a much more advanced

optimiser, which is extremely popular. Adam adjusts the learning rate during training accord-

ing to the loss; this makes the initial learning rate choice less important, as Adam will optimise

the learning rate over time; accordingly, a fixed learning rate of 2e-5 was chosen to match

the reference implementation [5] and Google’s implementation [47]. Adam implements both

RMSProp, which divides the learning rate by an exponentially decaying average of squared gra-

dients, and Momentum, which prevents rapid changes to the learning rate over time. AdamW

is an improvement over Adam aimed at deep models where weight decay is often applicable,

AdamW implements weight decay to prevent exploding gradients and help stop overfitting. Fi-
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nally, BertAdam is a further modification of AdamW used in the original BERT implementation

[47], which does not compensate for bias. RMSProp, Adam, AdamW and BertAdam were all

experimentally compared, with AdamW and BertAdam performing best but BertAdam seeing

greater performance on average, so was chosen as the optimiser for all model training.

5.3.5 Batch Size selection

The final hyper parameter to be chosen is the batch size, this dictates how many samples

will be processed in parallel and is typically a power of 2 (due to GPU’s typically having a

power of 2 concurrent stream processors). [71] found that increasing the batch size is beneficial

for classification performance, although the batch size is mostly limited by the amount of

available memory, larger batch sizes require proportionally more memory. The Titan XP we

used is limited to 12GB of memory, as such the maximum batch size experimented with was

32. However, decreasing this batch size to 16 resulted in a marked improvement in training

performance, possibly due to the reduced copy overhead since memory copies now take half the

time. Due to the improvement in training performance, a batch size of 16 was chosen, which

also reduced the GPU memory usage from 11GB to 5.4GB.

5.3.6 Claim Detection

The first task for which we developed code for, was the claim detection[UU] task, which detects

claims within the UKP dataset using the default BERT model. This facilitated the direct com-

parison of our outputs with the reference implementation to validate the implementation used

throughout the investigation. Following the design, the inputs were word piece tokenised and

mapped to ID’s using the default BERT vocabulary (for Twitter data the vocabulary generated

in section 5.2.7 is used). Then input masks and segment ID’s were generated for the input

data, forming a set of tuples (input_id, input_mask, segment_id). These were shuffled

and stored in a dataset structure that handled feeding the compute device (GPU/CPU) with

training samples grouped into batches of 16. The default BERT model was then loaded using

a classification layer with 2 outputs (according to section 4.5.4) and configured to use cross

entropy loss (according to section 4.5.5). Then the model was trained for 4 epochs, in each

epoch the model was called on a batch of samples and updated to decrease the loss on those

samples, until all training examples had been seen.

48



5.3.7 Claim Detection vs Reference Implementation

In order to compare the performance of the claim detection model developed here to that

found in the reference implementation [5] numerous changes had to be made to the reference

implementation, in order to extract useful results. First, [5] simply assigns ID’s to targets

using an enumeration of the unique target values as they appear in the dataset. However, since

the training, test, and validation sets were shuffled, this ordering was not consistent between

training and testing. As such, performance was not correctly measured. In order to fairly

compare the performance of [5] with our model, this was changed to generate a mapping and

store the encoding using the OrdinalEncoder provided in the sklearn python package, thus

ensuring a consistent mapping was used throughout the investigation.

The two implementations also differed due to the reference implementation’s [5] choice to

apply both a linear warm up and linear cool down to the learning rate during training. This

increases the learning rate from 0 to 2e-5 over the first 300 iterations (where an iteration is

one batch), and then decreases the learning rate back to 0 over the following 3000 iterations.

Firstly, this method limits the number of epochs to a fixed number of iterations, which adds an

unnecessary constraint on training, however, most importantly, linear cool down was not found

to increase performance when using the BERT Adam optimiser. Since a linear warm up is

included in the BERT Adam optimiser, we simply enabled it and did not manually implement

a linear warm up or cool down.

5.3.8 Masked LM

Once claim detection had been successfully implemented and its performance verified against

the reference implementation, masked LM tasks were performed. This involved pre-processing

both the UKP and Twitter datasets for the task according to section 4.6. First, the set of

sentences must be extracted from the text corpus. Typically this is simply done by splitting

the corpus on each occurrence of a full stop character “.”. Since the UKP dataset contains

far more structure the mean length of these sentences was 26 tokens, due to this semi-colons

“;” and commas “,” were also split on, giving a mean length of 23 tokens, bringing the UKP

sentence closer to the mean length of 22 tokens in the Twitter sentences. From these sentences

the Masked LM training examples were generated. However, since there are an exponential

number of combinations of Masked LM samples given the length of the input sequence, it

would be extremely memory inefficient to generate all possible combinations before training

commenced. Instead a generator was used which computed the Masked LM examples from
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a sequence at train time for the given batch. Doing so performs Dynamic Masked LM, as

each epoch will have a newly generated set of Masked LM examples. Furthermore, there is no

performance impact since generating a Masked LM example from a sequence is computationally

cheap and is computed in parallel with training, since each training batch is pre-fetched before

it is needed.

Since the vocabulary has already been dealt with according to section 5.3.2, the next alter-

ation is to append the appropriate classification layer to BERT’s output. For Masked LM the

classification layer must classify the masked token from the entire vocabulary of tokens, so the

output size must equal the size of the vocabulary. Since both the UKP and Twitter datasets

have been forced to have a vocabulary of 30,522 tokens, in either case, a classification layer

with 30,522 outputs is used. The final alteration is to use the BCE (Binary Cross Entropy)

loss according to section 4.6.

5.3.9 NSP

The final unique task is next sentence prediction, again using both the UKP and Twitter

datasets according to section 4.6. Much like section 5.3.8 sentences are extracted from each

corpus, again using the three punctuation symbols .,; to produce more sentences from the

UKP corpus. Although in this case the sequence in which each sentence appears in for every

Tweet/UKP debate, is maintained. Then each sequential pair is extracted and labelled as True

since the first sentence entails the second. Then a random sample of sentence pairs is selected

from the entire set of sentences of size equal to the number of sequential pairs found in each

dataset (in order to maintain a balanced dataset). Each sentence pair is selected so that the

first does not entail the second, but both can appear in the same tweet, or the second can entail

the first. These pairs are then labelled False and added to the training set. This yields 22,236

UKP samples and 148,844 Twitter samples; since this uses far less memory than all the Masked

LM samples (just 65MB of Twitter data), no generator is used, instead the samples are simply

stored in memory, just as they were during claim detection. The model architecture is the same

as that in section 5.3.6, following the design.

5.3.10 Input Truncation

Due to the BERT architecture expecting a constant number of tokens as input, there is a

limitation to the maximum sequence length that can be passed as input to the model. BERT

can be configured to support any input token length up to 512 tokens, but 64 was chosen to
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Data Task Model Model Outputs Loss
UKP Claim Detection [UU] Default BERT 2 Cross Entropy Loss
UKP Claim Detection [Ref] Default BERT 2 Cross Entropy Loss
UKP Masked LM Default BERT 30,522 BCE Loss
UKP NSP Masked LM BERT 2 Cross Entropy Loss
UKP Claim Detection [TU] NSP BERT 2 Cross Entropy Loss
Twitter Claim Detection [UT] Default BERT 2 Cross Entropy Loss
Twitter Masked LM Default BERT 30,522 BCE Loss
Twitter NSP Masked LM BERT 2 Cross Entropy Loss
Twitter Claim Detection [TT] NSP BERT 2 Cross Entropy Loss

Table 5.1: Task Configurations

reduce memory usage, as well as maintaining consistency with the reference implementation.

Consequently, sentences input to the model had to be truncated to 64 tokens (inclusive of the

special tokens [CLS] and [SEP]). For single sentence inputs the input was simply truncated

to length. Tasks with single sentence inputs include Masked LM and Twitter specific claim

detection. However, for those cases with 2 sentence inputs such as NSP or UKP claim detection

a token is removed from the longest sentence until the total input length was under 64 tokens

(inclusive of the single [CLS] token and the 2 [SEP] tokens).

5.3.11 Claim Detection with the Pre-Trained model

Bringing all these components together, the final tasks performed are the various combinations

of claim detection tasks. All using the same architectures as initially verified in section 5.3.6,

but each using a different combination of pre-trained model and/or training dataset. The 4 key

combinations tested were the following:

• Default BERT model trained and evaluated on the UKP corpus (Claim Detection [UU])

• BERT model pre-trained on the UKP corpus with Masked LM followed by NSP then

evaluated on the UKP corpus (Claim Detection [TU])

• Default BERT model trained and evaluated on the Twitter corpus (Claim Detection [UT])

• BERT model pre-trained on the Twitter corpus with Masked LM followed by NSP then

evaluated on the Twitter corpus (Claim Detection [TT])

The alterations to the model’s architecture for each of the 9 tasks performed have been

summarised in table 5.3.11.
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5.4 Measuring performance

There are numerous ways of measuring the performance of the model on the test and validation

sets. The simplest of which, being the accuracy of the model which measures the proportion

of correct predictions. However, this method does not account for potential biases towards a

given class, as such the F1-score is more commonly used. The F1-score has two commonly

used derivatives, micro and macro. The micro score is the mean F1 score taken for each class

where as the macro F1 score is calculated over all classes. Since each metric has its limitations

and drawbacks with respect to their simplicity and accuracy, all metrics will be reported and

analysed in order to evaluate claim detection performance. Using the F1 score also allows for

slight baises to exist in the training dataset, reducing the importance of the dataset balancing

conducted in section 5.2.6.

5.5 Testing

A key issue with any project is validating the correctness of the results obtained. In our case,

this was achieved with 3 methods. Firstly, unit tests were used in each task to verify that

all training data input to models was correctly pre-processed. Each test consisted of passing

exemplar input through the pre-processing functions, then verifying the expected output was

produced using assertions. If any test’s failed an exception is raised that will halt execution.

Due to the nature of the code, these unit tests were integrated inline within the code for each

task, do so encapsulates contains all processes for a given task in a single interactive session.

This follows the conventions used in other ML projects, including the reference implementation,

and helps reinforce the self-documenting code paradigm. An example of one of these tests is as

follows:

assert res_a['x'][0:a_len] == tokenizer.convert_tokens_to_ids(['[CLS]']

+ tokenized_test_input_a + ['[SEP]'])

assert res_a['input mask'] == [1] * a_len + [0] * (MAX_SEQ_LENGTH - a_len)

assert res_a['segment ids'] == [0] * MAX_SEQ_LENGTH

This ensures that all inputs to the model are properly formed for claim detection, where a

single input sequence of IDs is expected to start with the classification tag CLS and to terminate

with the separation tag SEP. As well as an input_mask, filled with ones for the duration of the

input sequence. And with the segment_ids set to 0, to identify the whole input as the first

sequence.
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Secondly, the performance of our model was validated against the reference implementation.

Since the same architecture and much of the training methods are common across each task,

as such the UKP claim detection task using the default BERT model should perform similarly

to the reference implementation. This task was developed first and then verified against the

reference implementation performance. Then any other tasks were adapted from this imple-

mentation of BERT which was known to be correct.

Finally, all results were taken from the evaluation set. Since the performance of the model

during development is gauged using the test set, naturally the hyperparameters manually chosen

will be optimised to perform best on this test set. This manifests itself as a form of manual

training of the hyperparameters on the test set; however, the very purpose of the performance

evaluation of the model is for it to operate on unseen data. The only way to mitigate the models

exposure to the evaluation data is to use a third evaluation set. Consequently, an evaluation

set was used for all performance measures reported in our results (section 6).
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Chapter 6

Results

The results obtained from each of the tasks have been detailed in table 6. For each result, we

will be using the micro F1 score to compare performance, as this measures performance with

respect to each class, minimising any remaining bias towards a given class.

Clearly, the variety of architectural modifications made in our implementation compared to

the reference implementation increase performance on structured text corpora. This is shown by

the refrence implementation Claim Detection [Ref] that achieves 0.810F1, while our implemen-

tation Claim Detection [UU] achieves 0.825F1. Next, we can see that the default BERT model

applies well to semi-structured text (Twitter) with Claim Detection [UT] achieving 0.776F1.

This is even comparable to the performance achieved on structured text corpera. Finally, we

have also shown that pre-training on the target domain does not increase performance for both

structured and semi-structured text. As the pre-trained Twitter task Claim Detection [TT]

performed significantly worse than the default task 0.599F1 vs. 0.776F1. And the pre-trained

UKP task Claim Detection [TU] also performed worse than the default task 0.805 vs 0.825.

It is also worth noting the performance attained during the pre-training tasks. The BERT

Data Task Model Accuracy F1-Macro F1-Micro
UKP Claim Detection [UU] Default BERT 0.827 0.827 0.825
UKP Claim Detection [Ref] Reference Implementation 0.810 0.810 0.810
UKP Masked LM 0.097 - -
UKP NSP 0.707 0.707 -
UKP Claim Detection [TU] Pre-Trained BERT 0.807 0.807 0.805

Twitter Claim Detection [UT] Default BERT 0.782 0.782 0.776
Twitter Masked LM 0.197 - -
Twitter NSP 0.695 0.695 -
Twitter Claim Detection [TT] Pre-Trained BERT 0.661 0.661 0.599

Table 6.1: Results
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architecture could more easily predict masked words in the Twitter corpus than in the UKP

corpus, but conversely struggled more to detect entailed sentences in the Twitter corpus than in

the UKP corpus. We believe that the discrepancy in Masked LM performance is due to Twitter

generally using a narrower vocabulary, while the UKP corpus includes a lot of very specific

vocabulary that is harder to predict given the context in which the word appears. As for the

discrepancy in NSP performance, this could be due to both the more specific vocabulary that

makes entailment relations easier to spot and the greater average sentence length in the UKP

corpus.

6.1 Detailed Performance Results

More detailed performance metrics were also recorded for each of the tasks using TensorBoard,

each has been inserted through figures 6.1, 6.2, 6.3.

Note that the F1 score in all graphs represents the performance on the test partition; for

validation performance, consult the table of results 6.

In the two sets of claim detection figures, you can see that both the Twitter F1 score was

consistently lower and the Twitter training loss was consistently higher than the UKP F1 score

and the training loss. This emphasises that claim detection on Twitter is a more challenging

task than it is for conventional debate-style text such as the UKP dataset. It is also worth noting

that in both cases a single training epoch is sufficient for a great reduction in the loss, such that

after the first epoch the model performance remains relativley unchanged. This highlights that

the majority of the natural language understanding is embedded during pre-training and merely

exposed during fine tuning. Next, you can see that in both the UKP and Twitter cases the

pre-trained model performs worse than the default model, but in the Twitter case specifically

the F1-score indicates that the pre-trained model was beginning to approach the performance

of the default model. Although if you consider the loss graph, this would not be the case,

as the pre-trained model’s loss has plateaued while the default model continues to decrease.

Finally, you can see that the model performs better at the Masked LM pre-training task on the

Twitter dataset than it does the UKP dataset; this is most likely due to both Twitter using

a more predicable vocabulary and the larger Twitter dataset versus the UKP dataset. Also,

the model performs as expected on the NSP task on the UKP data, with the characteristic

negative exponential loss. However behaves oddly on the Twitter dataset having a relatively

constant loss during training, implying that it is extremely difficult to detect entailed sentences

on Twitter.
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Figure 6.1: UKP Claim Detection (Blue-Default, Red-PreTrained)

Figure 6.2: Twitter Claim Detection (Orange-Default, Green-PreTrained)

(a) Masked LM (b) NSP

Figure 6.3: Blue/White-UKP, Pink/Orange-Twitter
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Chapter 7

Evaluation

This section analyses whether requirements have been met, evaluates our implementation in

light of our results, discuses how our models compare to the reference implementation, measures

the effectiveness of pre-training, and finally suggests improvements to our method.

7.1 Requirement Satisfaction

Overall, the project has been able to meet all the requirements set at its inception. It has

a simple structure with a clear guide to setup and execution. The use of self-documenting

code greatly helps to understand the processes involved with little prior knowledge required.

The results obtained have been clearly reported in both tabular and graphical forms and are

each supported by saved interactive Python sessions. From a functional perspective, we have

rigorously tested the performance of the BERT architecture on both structured and semi-

structured text. Furthermore, the assessment was validated through the use of a reference paper

and fairly reported through the use of the F1-Micro metric. Modifications have been made in

an attempt to better suit semi-structured text. However, the default BERT implementation

proved to outperform these modifications, performing comparably on semi-structured text as

structured text (0.782F1 vs 0.807F1). Since python has been used throughout the project

without failure, the project is completely platform-agnostic and can be run on Linux, Windows,

or Mac. Finally, training the necessary models is relatively accessible given that a 5 year old

GPU was used to train the models over a period of 3 days, although this could be improved

upon by migrating this computation to cloud-based platforms.
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7.2 Why our model performs better than the reference

The first change made compared to the reference implementation, was the use of the softmax

activation function. Although this was more for the sake of convention and to make the outputs

more logical, than for the sake of performance. It is more likely that the second change was the

cause of the improvement in performance. We used the optimiser to perform a linear warm-up

for the first 10% of the training iterations. Whereas the reference implementation manually

implemented a linear warm up and cool-down by increasing the learning rate rapidly at first

and then decreasing as training continued. This is likely the primary cause of the performance

disparity as there is little need to change the learning rate during training since that is the task

of the optimiser. As such the reference implementation could have been using a sub-optimal

learning rate.

7.3 Why Pre-Training has not increased performance

Intuitively, we expected that exposing the model to the application domain through pre-training

would increase performance when fine-tuning the model for claim detection. However, from the

results it is clear that this is not the case, neither for structured nor semi-structured text. This

is possibly due to the nature of the sequences of sentences we extracted, as the original BERT

paper states: “It is critical to use a document-level corpus rather than a shuffled sentence-level

corpus such as the Billion Word Benchmark (Chelba et al., 2013) in order to extract long

contiguous sequences.” [47]. Although neither corpus used here was sentence level, in both

cases the average sequence length was rather low. Twitter’s average sequence length was just

1.06, with just 54,934 of the 266,760 Tweets containing more than 1 sentence. Similarly, the

UKP dataset’s average sentence length was also 1.06. [47] primarily used Wikipedia as their

source for sequences of sentences, which features long paragraphs containing a high number of

sentences. On average a wikipedia page has 320 words [79], using a average sentence length of

20 words, this would lead to each article containing 16 entailing sentences, much higher than the

1.06 seen in both our datasets. Given this large disparity in the nature of the pre-training data,

it is reasonable to assume that a longer average sequence length is required for a pre-trained

model to perform well.
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7.4 How to improve

Upon reflecting on the overall performance of the model, some potential avenues for improve-

ment are raised.

7.4.1 DistilBERT

Given the time-consuming nature of labelling tweets, a choice of model with fewer parameters

may have been preferable. Models with fewer parameters generally require less training data,

although because of this generally perform worse. During the discussion concerning the choice

of architectures (section 4.3) DistilBERT was raised as a good candidate for claim detection,

although it was ultimately decided against due to its lack of use in literature. However, Dis-

tilBERT has 40% fewer parameters than BERT but performs just 3% worse. As a result,

DistilBERT may have outperformed BERT given the small dataset of labelled tweets; it cer-

tainly warrants future investigation.

7.4.2 Sequence extraction

Another potential technique to improve performance is to change the method of splitting text

into sentences. The UKP corpus was split into sequences with 3 tokens to increase the number of

sequences extracted from the dataset (“.”,“;”,“,”), as opposed to solely splitting on full-stops.

However, this may have hindered Masked LM performance, given that Dynamic Masked LM

was used. As the number of input combinations possible when using Dynamic Masked LM is

directly proportional to the total number of words in the dataset, not the number of sentences.

It is plausible that the pre-trained model could have performed better by splitting solely on full-

stops, as the training examples would contain longer sentences. More experimentation should

have taken place into the optimal method to extract sequences of text from either dataset.

However, given the computational expense that this would have required, it would not have

been feasible during our investigation.

7.4.3 Topic based claim detection

Claim detection on the UKP data set used a two-sequence input format where the first sequence

contained the topic, and the second, the text that was to be checked for a claim. However, claim

detection on the Twitter dataset did not contain this topic sequence. Potentially, this could

explain the performance discrepancy, as the topic sequence can be used to aid the classification
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of claims. This could have been assessed by annotating Twitter data with both the claim class

and a topic identifier, although this would have increased the already expensive annotation

process.
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Chapter 8

Legal, social, ethical, and

professional issues

Academic professional standards have been strictly adhered to throughout the development of

the project. This entailed citing every source of information used during our research to ensure

that correct acknowledgement is given to other researchers and the public. It is for this reason,

that the modified reference implementation is not included in our source code, as this could

have led to ambiguity of authorship.

Further legal standards have been adhered to by ensuring that all software used in the

project is licenced appropriately for it’s use in the project. This included checking the copyright

notices of the datasets and reference implementations used in the project. Additionally, the

collection of data raises data protection issues; Twitter’s guidance was carefully adhered to,

as well as data protection regulations before collection and storage commenced. Overall, since

the data is sourced from the public domain, and is not personally identifiable, it can be freely

downloaded for academic use. However, according to Twitter’s policies, this data cannot be

publicly distributed; accordingly, any repositories containing the collected data have been kept

secure and private to prevent public distribution.

Ethical considerations have been considered throughout the project, and effort has especially

been applied in order to minimise biases toward any one group of people. The review of the

subject by Hutson[80] was taken into account, but unfortunately the proportional representation

of ethnic groups could not be guaranteed in the collected data, as this data is not publically
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available. This data would raise numerous data privacy issues. Instead, a diverse range of

topics was mined, and all sampling was conducted randomly to eliminate any potential bias.

The project also has positive ethical impacts; for instance, it contributes to the explainability

of AI. This is a growing focus given the upcoming EU regulations [1] [2] [3]. These will require

that the logic used by intelligent systems must be explainable according to the risk level of the

application. Argumentation mining could be applied here to construct logical arguments from

structured or semi-structured text and present reasoned arguments for and against certain

decisions, thus rationalising potentially high-risk decisions.

The choice of the computationally expensive BERT model also raises ethical implications, as

it reduces the accessibility of the methods used. Special attention was paid to this throughout

the investigation, and steps were taken to minimise memory usage. Such as opting for a smaller

batch size of 16 and a relatively low maximum sequence length of 64 tokens. Together, this

reduced GPU memory usage to 5.4GB during training. Additionally, to allow users without a

GPU to interact with the project, CPU training support has also been added to all tasks. The

implication of training on the CPU is that CPU memory usage increases, as the 5.4GB of model

data previously stored on the GPU must also be stored on main memory. Due to this, care was

taken to minimse CPU usage, for example using generators wherever possible to generate data

as it is needed rather than preprocessing all data before training commences. Accordingly, the

maximum CPU memory usage we recorded was 2.6GB. Therefore when training on the CPU,

the maximum usage would be 8GB. Accessibility was also maximised by developing support for

all major operating systems, since python is used throughout the project, all code developed in

the project can be ran on any operating system, Windows, Linux, Mac or otherwise. Doing so

helps ensure that the project is accessible to as many individuals as possible.

The high computational cost of the project also raised environmental concerns as a large

amount of energy was consumed to train the models developed in this project. To mitigate

the environmental impact of the project, the utmost precaution was taken before commencing

model training in order to minimise wasted computation. Overall approximately 8 days was

spent training the various models. Given that the graphics card used in the project consumes

250W of power, this gives a total power usage of 48kWh. This amounts to 11.2 kg of carbon [81].

All models trained during the investigation have been made available online in order to avoid

redundant energy consumption.
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The deployment of argumentation mining tools raises some potential social issues. Argu-

mentation mining tools increase our access to users with specific opinions. It could be used

as a tool for targeting specific groups of individuals. Potentially leading to online harassment

or other forms of targeted hate online that would impair freedom of speech. Due to this, any

deployment of argumentation mining tools would have to be carefully moderated to prevent

abuse.

A particular shortcoming of the project is its lack of application to other languages, the only

language studied in the investigation was English. However, English alone does not represent

the global population. A multi-lingual version of BERT has been provided by [47]. But this

version was not used in this report as a multi-lingual annotator was not available when our

Twitter dataset was constructed. An investigation of the performance of the model on various

languages should ideally be conducted in the future.
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Chapter 9

Conclusion

To conclude, we have established that the BERT architecture performs well at the claim de-

tection task on semi-structured text. BERT is able to correctly classify whether tweets contain

a claim with 78.2% accuracy. It does so with little bias toward a given class, given by the

similarly high F1-Macro score of 0.776. Accordingly, this report fills the current gap in the

literature, since to date BERT has not been applied to claim detection in semi-structured text

corpora.

Further we have applied novel techniques to encode features unique to social media such

as mapping emoji’s to their descriptions and feature binarisation. This has previously been

applied to the much more mature opinion mining task with positive results, but to date had

not been applied to any field in argumentation mining where BERT has been employed.

Finally, we have demonstrated that the pre-training methods used during BERT’s develop-

ment, namely Masked LM and NSP cannot be applied Twitter to improve performance, due to

the lack of sufficiently long tweets.

Extensive testing and verification has been conducted to verify the accuracy of our results,

as well as careful performance validation to ensure that the performance of each model has

been fairly measured.

9.1 Applicatons

The work in this report in it’s current state has numerous practical and theoretical applications,

for instance the model could be deployed to Twitter. Calling BERT is much cheaper than

training, so it’s conceivable to classify every tweet posted to the platform. Then, since the
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model has been developed to output probabilities, the probability that each tweet contains a

claim can be displayed on the UI. Alternatively the probability could be used to allow users

to search for controversial tweets, since they will naturally contain a claim. The model could

also be used to reduce ’clutter’ in text, since any sentences that do not make a claim could

be discarded. This could be especially useful when mining for facts, as the search space could

be greatly reduced by filtering out any sentences that do not make a claim. Should this work

be developed towards a complete argumentation mining solution, there would a much broader

range of applications...

9.2 Next steps

There are two possible avenues that can be taken to progress the field of argumentation mining,

given our research.

Firstly, this model can be used to progress to the next step of argumentation mining, relation

identification. Given that relation identification is a similar problem to NSP, it is reasonable to

assume that the architecture used here would apply well to relation identification. Furthermore,

once a relation identification model has been developed, it can be combined with our model

to build argumentation trees. This would then allow us to mine the structure of arguments

from social media, which could be used to gauge the interaction of users with a given topic.

If this were then to be combined with a stance detection model, we would have a complete

argumentation mining model, allowing for both the structure and stance of arguments to be

extracted from social media. This could be used to gauge how many people are in support or

opposition to controversial topics, which could have a variety of political uses.

However, realistically, a lot of progress must be made before this is possible, as the model

developed here is not nearly accurate enough to be trusted for important decisions. For this we

can look to a similar but far more mature field, opinion mining, which at the time of writing

contains models which are up to 96% accurate. The most obvious discrepancy between the two

fields is the availability of large crowd-sourced datasets. We believe that this is the primary

development that is required for the field of claim detection and, by extension, argumentation

mining, to progress.
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